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ABSTRACT

. Numerical weather prediction models have not produced accurate
precipitatinn forecasts, especially short-~term forecasts of significant
precipitation events. One reason for this has been that numerical
models are normally initialized with nondivergent winds. This means
the model must develop a vertical motion field and an associated
precipitation field. Therefore, the initlal precipitation rate is
underforecast and the precipitation forecast itself is adversely

affected. One method of solving this problem is the initialization

of the divergent wind component (hereafter termed divergent ¢

initialization). Previous divergent initialization attempts have been
primarily on the synoptic scale. These attempts did not produce a
significant change in the initial precipitation rate. Divergent
initialization on the mesoscale will be attempted here. .

The general divergent initialization procedure proceeds as

H
t

follows: omega values are diagnosed using the omega equation;
velocity potentials are derived from the vertical velocities with the
continuity equation; the divergent wind components are obtained from
the velocity potentials; geopotentials are calculated on sigma
surfaces using a balance equation with contributions from both the
nondivergent and divergent wind components; finally, balanced
temperatures are derived using the hydrostatic equation. -

A scale analysis was performed on the vertical velocity and
divergence equations to determine the forms appropriate for the

mesoscale (grid increments from 60 to 200 km). The scale-dependent
1
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differences of divergent initialization on the synoptic and mesoscales
were studied. Both nondivergent and divergent wind components are
required for these equations. To obtain them, boundary conditions on
stream function and velocity potential are required. The low-wave-
number boundary variation of stream function and velocity potential
should be specified accurately to minimize the influence of the
boundary values on the solution in the domain interior. A method for
specifying boundary conditions on velocity potential with accurate
low-wavenumber boundary variation was developed.

The forecast model used was developed at The Pennsylvania State
University. The version used here had six levels, low-resolution
planetary boundary layer physics, and a grid increment of 120 km.

The mesoscale omega equation was solved by three-dimensional
relaxation over the domain. The observad rainfall rate was used to
construct a parabolic omega profile. A heating rate was derived from
the profile and used as input for the diabatic term in the omega
equation. On the mesoscale, the largest single term in the omega
equation was the diabatic term. The greatest uncertainty in the
calculation of omega values was the representativeness of the observed
precipitation rate.

Five 12-hour forecasts were conducted, two with unbalanced initial
conditions and three with different balanced initial conditionms.

Three forecasts had essentially nondivergent initial conditions. The

fifth forecast was balanced on sigma surfaces and was initialized with

~ |
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the total wind, the divergent part of which was derived from the
diagnosed omega field. The noise characteristics of the five

forecasts did not differ greatly from those reported by other
investigators. However, the forecast from the divergent initialization
produced more precipitation than the other forecasts, especially in

the first three hours. Also, the divergent initialization produced

a more evenly distributed precipitation prediction. The forecast

model retained the initial divergence. The effect of divergent
initialization was significant for this case and would likely improve
short-range precipitation forecasts from mesoscale numerical weather

prediction models.
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f. Location 6 . 163 :
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34 Forecast rain rates (cm h_l) for each 0.l-hour period

for the first 1.4 hours of Forecast 5, the forecast
with divergent initial conditions, for that portion
of the domain with the highest initial precipitation
rates. For comparison, the observed rain rate

(cm h™1l) derived from Fig. 13 and the locations from
Fig. 32 are also given. The contour interval is
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LIST OF SYMBOLS

earth radius = 6.37x106 m; coefficient in equation for
convective omega profile (Appendix 1)

amplitude of velocity potential in (2.66); domain area;
area of overlap region (Appendix 3)

. U
Pi,5 "1,3
coefficient in equation for convective omega profile
fz

, Vv .
piyJ 1,3

boundary velocity potential gradient correction
(Section 2.3.4)

coefficient in equation for convective omega profile

correction to be added to v in Anthes (1976)
obs
method for the determination of wB

correlation coefficient for a displacement given by 2
and k

specific heat capacity of dry air at constant pressure
arbitrary constants

characteristic phase speed of motions considered;
matrix of correlation coefficients for precipitation
scoring (Appendix 3)

surface drag coefficient

depth of PBL

horizontal divergence = V-V

length of domain in y direction

characteristic value of the local rate of change of
divergence

saturation vapor pressure

Coriolis parameter = 2Q sind
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LIST OF SYMBOLS (Continued)

humidity parameters defined by (Al.20a), (Al.20b),
and (Al.20c), respectively

typical mid-latitude value of £ = 1074 g%
forcing function in omega equation relaxation
general forcing function

cocmporent of Fr in the x direction

component of Fr in the y direction

surface friction force

acceleration of gravity

general horizontal vector

Green's function (Section 2.3.4)

in an S1 score, the maximum of Apf and Ap°
(Section 7.2.2)

actual height above sea level or terrain height above
sea level; heating rate per unit mass of air
(Appendix 1)

atmospheric scale height = RT/g

rate of sensible heat addition per unit mass from a
water surface

index in finite-difference equations in the x direction;
1

unit vector in the positive x direction

index in finite-difference equations in the y direction
unit vector in the positive y direction

index in finite-difference equations in the z direction;
north-south displacement of forecast precipitation

field with respect to the observed field (Appendix 3)

unit vector in the positive z direction
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LIST OF SYMBOLS (Continued)

one less than the number of levels (Appendix 1)

east-west displacement of forecast precipitation field
with respect to the observed field

characteristic horizontal length scale; latent heat of
condensation (Appendix 1)

length of the domain perimeter

length of the domain in the x direction

map scale factor

molecular weight of water = 18 g

number of points in the y direction (Appendix 3)

number of iterations for which Xp is corrected
(Section 2.3.4)

coordinate direction normal to the domain boundary;
iteration number (Appendix 1)

unit normal vector, positive outward
number of points in the x direction (Appendix 3)
number of boundary points in Eq. (2.57)

pressure

Py

i,
(pt+ps)/2

pressure at sigma level n
sea level pressure
surface pressure

pressure at the model top
PPy

precipitation matrix (Appendix 3)
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LIST OF SYMBOLS (Continued)

precipitation amount at point (1i,j) (Appendix 3)
forecast precipitation matrix

observed precipitation matrix

specific humidity

saturation specific humidity

diabatic heating rate per unit mass of dry air

specific gas constant for dry air; rain rate
(Appendix 1)

1.134(10-6) R where R is rainfall rate (Appendix 1)
residual at point (i,j,k) after iteration n
Rossby number = V/fL

characteristic ratio of divergence to vorticity for a
given L

parameter used for rain rate in the scale analysis of
the vertical velocity equation

universal gas constant

coordinate direction along domain boundary, positive
in the counterclockwise direction

variance of forecast precipitation field

variance of observed precipitation field

time

tangent unit vector in the counterclockwise direction
temperature

characteristic local time scale

where x is a term number in an equation

horizontal velocity component in the positive x direction
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LIST OF SYMBOLS (Continued) i
uX divergent part of u '
i
§
' u, nondivergent part of u i
l v horizontal velocity component in the positive y direction
v, horizontal velocity component normal to the domain
boundary, positive outward
l v, horizontal velocity component in the s direction
I vx divergent part of v
vw nondivergent part of v
l v characteristic horizontal velocity :
v, vy horizontal wind velocity = ui + vj
l YX uxi + vX_% on a constant pressure surface
Yw uwi + Vw3 on a constant pressure surface
' X horizontal coordinate of Lambert conformal projection;
at grid center, x-axis is oriented east-west
' X, x coordinate of a divergence source (Section 2.3.4)
y Lorizontal coordinate of Lambert conformal projection;
I at grid center, y-axis 1s oriented north-south
Yo y coordinate of a divergence source (Section 2.3.4)
l z vertical coordinate
l A generalized vertical coordinate = - ln(p/po)
a specific volume ‘
' By df/dy

8 3f/3y on a rectangular grid
{ Y lapse rate = - 3T/3z
Y, 3f/3x on a rectangular grid

dry adiabatic lapse rate = g/cp
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LIST OF SYMBOLS (Continued)

static stability in Z coordinates
vertical finite-difference operator defined by (5.4b)
0.622

~

relative vorticity = k*V x V
g+ f

potential temperature

R/cp; wavenumber (Section 2.1.5)
damping factor

3.14159 ...

density of air

surface density of air

(r - pt)/p* = a vertical coordinate
static stability

vertical velocity in sigma coordinates
summation symbol

~ ~

T i+ 3
zX zy

surface stress component in the x direction

surface stress component in the y direction
geopotential = gh

geopotential at level n

perturbation geopotential

when a Poisson equation is solved on a rectangular
domain, ¢ is that portion of ¢ (a general variable)

on the 1n§grior of the domain due to the value of ¢
on the right boundary of the domain
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xxiii

LIST OF SYMBOLS (Continued)

latitude

velocity potential

stream function

vertical velocity in pressure coordinates = dp/dt
maximum omega in the convective omega profile
rate of rotation of the earth = 7.292){10_5 s-1

grid increment; characteristic model grid increment
(Chapter 1)

characteristic synoptic model grid increment
characteristic upper meso-f scale grid increment
characteristic meso-y scale grid increment

horizontal gradient measured on a surface of coustant n
where n = p, o, or 2

horizontal Laplacian measured on a surface of constant n
where n = p, o, or Z

finite-difference Laplacian

mean value of ()

finite-difference average defined by (5.2c)
finite-difference average defined by (5.2d)
finite-difference average defined by (5.4a)
d( )/de

actual or known value of ( ) (Section 2.3.4)
current value of ( ) (Section 2.3.4)
geostrophic ( )

boundary value of ( )
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LIST OF SYMBOLS (Continued)

value of
value of
value of
value of
observed
()ona

value of

() at the first interior grid point
() at point (i,j,k)

() at point (i,j)

() at level k

value of ()

pressure surface

( ) due to terrain

finite-difference operator defined by (5.2a); partial
differentiation with respect to x

finite-difference operator defined by (5.2b); partial
differentiation with respect to y

() ona

sigma surface

finite-difference operator defined by (5.3a)

finite~-difference operator defined by (5.3b)

is identical to, is defined by

approximately, on the order of

at least

two orders of magnitude smaller than

1
magnitude of vector G = (§'§)1
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CFL

DI

FNWC

GCM

LHS

NCAR

NMC

PBL

PDE

PE

PSU

RHS

SI

SLP

WAM

LIST OF ABBREVIATIONS

Anthes and Warner, 1978 (a reference)
Courant-Friedrichs~Lewy

dynamic initialization

finite-difference

Fleet Numerical Weather Central, Monterey, California
general circulation model

Greenwich Mean Time

left hand side of the equation

manually digitized radar (data)

National Center for Atmospheric Research, Boulder, Colorado
National Meteorological Center, Silver Spring, Maryland
numerical weather prediction

National Weather Service

planetary boundary layer

partial differential equation

primitive equation

The Pennsylvania State University

right hand side of the equation

root mean square

static initialization

sea level pressure

Warner, Anthes, and McNab, 1978 (a reference)
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1.0 INTRODUCTION

Perhaps the four most important events to influence meteorology

in the twentieth century are:

(1)
(2)

(3)
(4)

the development of the concept of a front,

the development of a global rawinsonde network for the
twice-daily sampling of the atmosphere,

the invention of the electronic computer, and

the use of earth-orbiting satellite platforms for the

observation of the atmosphere.

Simultaneously, meteorologists have gained increased knowledge and

insight into the physics of the atmosphere. All of this, coupled

with the very rapid developments in computer technology, has led to an

ever increasing interest in the mathematical modeling of atmospheric

structures in general and in numerical weather prediction (NWP) in

particular.

Primitive equation models of the atmosphere require initial

conditions for the mass and momentum variables.

are derived from a limited number of observations, particularly at

synoptic

times. Many observations which are available, including some

at synoptic times, are not used to assist in defining the initial

conditions. Additionally, most observations that are used contain

errors.

After a meteorological field is.analyzed, it must then be

interpolated vertically and/or horizontally to define the field at

— L

The initial conditions
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the model grid points. This interpolation process also introduces
errors. Therefore, the entire data analysis process introduces errors
even though the process itself iIs ersential for a model integration.

Once the model variables have been analyzed to the model grid
points, it is usually desirable to balance the mass and momentum fields.
Balancing means that the mass and momentum fields are made compatible
with one another so that the nonmeteorological accelerations produced
at the beginning of a forecast are minimized. Normally, balancing 1is
accomplished by requiring that the mass and momentum fields initially
obey some diagnostic relationship. Examples of diagnostic relationships
include the geostrophic wind equation, the gradient wind equation, and
the balance equation. An initialization procedure of this kind, i.e.,
one which uses data primarily from one time and that does not use the
model equations for balancing, is known as a static initialization (SI).

For complex baroclinic models that contain complex parameteriza-
tions of diabatic, frictional, and radiational effects, it is usually
difficult if not impossible to find simple but adequate diagnostic
relationships between the mass and momentum fields. This fact has
led to a new kind of initialization procedure known as dynamic
initialization (DI). The distinguishing feature of DI is that the
model equations themselves are used for the balancing step.

In a standard SI, the initial conditions are customarily non-
divergent because of the diagnostic balance relationship usually
employed. Although they are relatively simple, nondivergent initial
conditions do not permit a modellto initially forecast precipitation

at the observed rate. Since mesoscale NWP models will be used
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primarily for short-range (6- to 24-~hour) forecasts, it is especially
desirable for the model to accurately forecast the initial precipitation
rate. If the initial precipitation rate is greatly underforecast,

then the model probably will not forecast precipitation correctly for
periods on the order of twelve hours because the model should not
overforecast precipitation late in the 12-~hour period.

A method of correcting this precipitation rate problem, previously
employed primarily on the synoptic scale, has been the addition of a
divergent component to the nondivergent initial conditions. Normally,
this procedure consists of using the omega equation to get vertical
velocities. Then the continuity equation with appropriate boundary
conditions is solved to get the velocity potential and the divergent
wind field. The divergent wind component is then added to the
nondivergent initial conditions. Generally, results with this technique
on the synoptic scale have produced little change over results based on
nondivergent initial conditions. The objective of this thesis is to
study how the divergent wind component can be incorporated in a static
initialization on the mesoscale in such a way as to improve the
initial forecast precipitation rate. This should in turn improve the

model's forecast precipitation amounts for varying time periods.

1.1 Review of the numerical model initialization problem

Development of initialization techniques has paralleled the

development of numerical models themselves. Therefore, it is

T MMM L o % g e
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appropriate to review briefly the history of NWP before discussing

initialization.
1.1.1 Brief history of numerical weather prediction

The discovery leading to modern NWP was the realization that the
forecast problem can be treated mathematically as an initial value-
boundary value problem for the nonlinear partial differential
equations which govern atmospheric motion. L. F. Richardson (1922)
was the first to apply this idea. Richardson encountered several
problems which we are careful to avoid today. One of the problems
that led to his failure was the use of observed rather than balanced
data. The resultant large-amplitude nonmeteorological waves destroyed
the meteorological forecast. Additionally, since'gomputers were not
yet invented; a large amount of time was required for the calculationms.
Richardson's failure resulted in a lack of interest in NWP that
lasted about 25 years.

Renewed interest in NWP occurred in the late 1940's. By then
the use of rawinsondes made more accurate and more spatially and
temporally numerous observations available. Also, the electronic
computer had been invented. Simple "filtered" models, which eliminated
the large-amplitude fast moving waves (and thus permitted larger time
steps) that destroyed Richardson's forecast, were developed.

As computer size and speed increased, primitive equation (PE)
models came into use because they permit greater flexibility. Gravity-

inertia waves, which are meteorologically important in the atmosphere,
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are allowed to exist in PE models. The philosophy is that the model

which most closely resembles the atmosphere will best forecast the
atmosphere. However, this added flexibility requires much greater

care in the formulation of the initial conditions. One aspect of

Improved numerical forecasts are hampered by three constraints

(1) The temporally and spatially continuous atmosphere
must be represented by data at discrete points.
Therefore, the entire spectrum of atmospheric motions
cannot be resolved. In addition, numercus problems

arise due to the approximation of derivatives by

(2) We do not completely understand the physics of the
atmosphere. Processes which make important contributions
to the evolution of the atmosphere are not adequately
represented. Also, computers are limited in terms

of their size and speed in spite of the very rapid

(3) Inappropriate specification of the initial conditionms

will limit forecast accuracy because a numerical

Dutton (1976) pointed out that even if the initial conditions
are perfect, the model's ability is limited because imperfectly

handled nonlinear interactions lead to forecast error growth.

-~ .

l that formulation is addressed in this thesis.
N l (Haltiner and Williams, 1975):
)
|
o
!
&
; l finite differences.
1

advances in computer technology.
l forecast is an initial value problem.
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Nonlinear interactions produce unresolvable wavelengths which
erroneously appear on the grid at resolvable scales (this phenomenon
is called aliasing). Because the nonlinear interactions are always
there, the error increases with each time step. Lorenz (1965) stated
that the difference between the forecast and actuality will eventually

be that of two random states for the appropriate time of day and year.

1.1.2 Stages of the initialization process

The initialization problem has defied easy solution. The basic

stages of the process for grid-point models are:

(1) observation,
(2) analysis to grid points, and

(3) balancing the mass and momentum fields.

The first stage has often been a problem because the observation
density is usually low. The observations also contain human and
instrumental errors as well as information on unresolvable scales.

The second stage consists of interpolation from observation
locations to grid-point locations and to a fixed time. Cressman (1959)

gtated that interpolation should

(1) ensure internal consistency among variables,
(2) reduce observation errors, and

(3) smooth subgrid-scale features.
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The third stage in the initialization process can be crucial.
Thompson (1961) noted that large-scale accelerations are due primarily
to small differences between forces. That is, the net accelerations
are 10 percent of the magnitude of the iﬁdividual accelerations.
Therefore, to determine the accelerations within 10 percent, the wind
and horizontal pressure gradient force must be known within 1 percent.
This accuracy has not been attainable with most present-day observations
so observed data cannot be used directly as initial conditions.

A dynamic balance may be defined as follows: mass (temperature
and pressure) and momentum fields are compatible (in ""balance') when
the only accelerations produced by the mass and momentum fields
generate features of meteorological importance. When an imbalance
exists between the mass and momentum fields, the atmosphere tends to
reduce the incompatibility through a mutual adjustment process. The
theory of this process has been developed by Rossby (1938), Cahn (1945),
and Washington (1964), among others. This theory, called the geostrophic
adjustment theory, predicts that on the mesoscale, the wind field
dominates the height field in the adjustment process.

One of the mechanisms which accomplishes the adjustment process
is the gravity-inertia or gravity wave. A gravity wave is a wave
driven by the force of gravity which can redistribute mass and kinetic
energy. Gravity waves that are generated by imbalances in the initial
state traverse and then leave the domain and hence usually do not have
a major influence on the forecast after 12 to 24 hours. However,
unrealistic pressure fluctuations and accompanying vertical motions

can completely obscure meteotologically important motions during the
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first twelve hours (Sasaki, 1969; Haltiner and Williams, 1975). This
fact has made short-term forecasting difficult. If the model initial
conditions have not been balanced to an adequate degree, the

meteorologically important part of the forecast can be permanently

and adversely altered by the model's response to the initial imbalance.

Incompatibility between the mass and momentum fields can be

generated in many ways:

(1) errors are contained in the observations,

(2) observations have contained information on scales of
motion not represented,

(3) 1interpolations, both vertical and horizontal, have
reduced the balance, and

(4) a balanced state in the atmosphere does not necessarily
correspond to a balanced state in the model because of

the numerous approximations contained in the model.

As an example of (4), Nitta and Hovermale (1967) pointed out that
boundary conditions and finite difference methods employed in the
numerical formulation of the model atmosphere can produce gravity-

inertia waves.

1.1.3 Balancing of the mass and momentum fields in PE models

The purpose of balancing is to reduce the generation of

nonmeteorological gravity-inertia waves without altering the

meteorologically important motions. Unfortunately, the balanced state
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for complicated models that include friction, cumulus convection,
radiation, etc., is usually unknown.

There are two common and several less common types of balancing
methods (Bengtsson, 1975; Baer, 1977). The types of balancing methods

are:

(1) static initialization (SI),

(2) dynamic initialization (DI),

{(3) initialization by statistical methods,

(4) initialization utilizing dynamical integral constraints, and

(5) normal mode initialization.

They can be summarized as follows:

(1) SI. 1In a static initialization (SI), information
applicable primarily at one time is used. Time derivatives in the
equation of motion are usually neglected to get a diagnostic approxima-
tion to the balanced state. Examples of diagnostic relationships that
have been used are the geostrophic wind equation, the gradient wind
equation, and the balance equation.

(2) DI. The other common balancing method has been dynamic
initialization (DI). In DI, the actual model equations are used
complete with time derivatives. A DI may utilize data from one time
only. However, some DI techniques employ data from two or more times.

In this type of DI, sometimes called four-dimensional data assimilation,

sy g Ny e AR B S S aam WD GEE IR D AR OB aam

a preforecast integration, usually forward in time, 1s performed.
(3) Initialization by statistical methods. The National

Meteorological Center (NMC) of the National Weather Service (NWS) has
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used no separate initialization for their operational 6-level PE

model. The forecast is started directly from the products of the
objective analysis. The model is initialized with analyzed geopotentials,
analyzed nondivergent winds, and 12~hour forecast divergent winds. This
procedure was adopted because the short-range forecast errors were
smaller than when the balance equation was used.

(4) Initialization with dynamic integral constraints. To
minimize noise, the initial analyses can be adjusted to each other such
that they satisfy some given equation(s). The most successful approach
has been that of Sasaki (1958) which is based on the calculus of
variations. First, for each meteorological variable, the difference
between adjusted and observed quantities at a point is expressed as a
sum of squares. Then the integral over the volume of all the sums of
squares is minimized such that a given constraint is satisfied. This
method's major drawback has been its complexity.

(5) Normal mode initialization. First, the normal modes of
response for the model to be initialized must be determined. For
example, a simple baroclinic model may have one fast external gravity-
inertia wave mode and one slow internal gravity-inertia wave mode.

The observations are then resolved into a series expansion of the
normal modes in such a way as to detect the fast and slow modes.

Then the coefficients of the fast modes are set equal to zero. With
this method, the initial vcrticity field is presumed correct and the
corresponding geopotential and divergence fields that would eliminate
high-frequency noise are found. This initialization technique is

extremely complex, time consuming, and is just beginning to be used.
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1.2 Previous research on the initialization of PE models

1.2.1 Historical review of initialization

The early work on initialization consisted primarily of replacing
subjective techniques for the analysis of observations to grid points
by objective analysis. The first objective initialization technique
was due to Panofsky (1949). Panofsky approximated wind and pressure
observations by third-degree polynomials requiring 10 coefficients.
Boundaries and data-sparse regions were difficulties encountered with
this method.

The successive correction type of objective analysis was first
introduced by Bergthérsson and D&&s (1955). First-guess values of
geopotential were obtained. These values were then corrected by
geopotential and wind observations in one additional scan over the grid.

Cressman (1959) also employed the successive correction method of
objective analysis. He made several passes with an increasingly small
radius of influence. Because of the method's simplicity and its
applicability to most atmospheric variables, even in data-sparse
regions, it was the primary analysis tool of the NWS until its
replacement in 1974.

As models became more sophisticated, research on balancing
became more important. One of the earliest studies of mass-momentum
balancing was by Hinklemann (1951). Using a linear barotropic model,
he showed that the amplitude of the undesired gravity-inertia waves

was reduced by replacing the observed winds with geostrophic winds.
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Charney (1955) util zed the balance equation to obtain geopotentials
from the wind field. Using a primitive equation model and artificial
winds, he showed that the generation of large amplitude gravity-inertia
waves was greatly suppressed when geostrophic winds were replaced by

balanced winds.

1.2.2 Dynamic initialization

Dynamic initialization was first studied by Nitta and Hovermale
(1967). To balance the mass and momentum fields, the initial conditions
on mass and momentum were forecast one time step forward followed by
one time step backward. Then the mass or momentum field was restored
to its initial value. The cycle was repeated numerous times. The
resulting gravity-inertia waves were damped by the Matsuno (1966) time
differencing scheme. It was shown that the model equations could be
used to achieve balanced initial conditions.

A dynamic initialization technique was also studied by Hoke and
Anthes (1976). In this technique, a 12-hour pre-forecast integration
is performed in which the model variables are nudged toward the observed
value of the variables at each grid point and time step. Subsequent
12-hour forecasts were better than those forecasts started from a SI.
However, this kind of DI had disadvantages. First, it required
additional computer time (in this case 24 hours of simulated time for
a 12-hour forecdst). Second, at the end of the pre-forecast integration,
the model variables.have not necessarilly been close to the known grid

point values.
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Temperton (1976) performed experiments in dynamic initialization
with a 5-level hemispheric model. The model was run 10 days to achieve
a balanced state which was considered the control run. Temperton
found that external gravity waves led to smaller forecast rain amounts
than occurred without external gravity waves. Additionally, he found
that dynamic initialization yielded smaller rain amounts than the
control. Temperton showed that external gravity waves should be
rapidly damped by DI while the low frequency internal modes are

relatively unaffected.

1.2.3 Normal mode analysis and initialization

Phillips (1960) and Blumen (1975) have suggested incorporating
the model's normal modes of response into the initialization process.
Flattery (1970) employed Hough functicns in his analysis scheme in
which atmospheric data are expanded in terms of the Rossby modes of
free oscillation of the shallow fluid equations. This implied that
no gravity-inertia waves should be generated in an exact integration
of the linear equations.

Dickinson and Williamson (1972) suggested linear normal mode
initialization and determined the normal modes of a 2-level model
based on the shallow fluid equations expanded in terms of spherical
harmonics. Williamson (1976) then applied a normal mode initialization
to a shallow water grid-point model. He found reduced gravity-inertia
oscillations in nonlinear integrations but the gravity-inertia waves

were not eliminated.
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Williamson and Dickinson (1976) determined the normal response
modes (vertical and latitudinal) for the linearized National Center '
for Atmospheric Researgh (NCAR) general circulation model (GCM). . ’
The ensuing integrations were found to contain less noise.
Machenhauer (1977) and Baer (1977) have extended normal mode
initialization to include nonlinearity. Machenhauver first determined
the free normal modes of a spectral, hemispheric, shallow fluid model.
He then determined which nonlinear interactions between normal modes
lead to gravity-inertia waves. The time derivative for the normal

mode coefficients for unwanted modes was set to zero. Machenhauer

also stated that normal mode initialization produced significant
changes in the forecasts and is complicated and time consuming.
Another disadvantage of this type of initialization has been that
if the model is changed, the normal response modes are changed, and
the model normal modes must be reanalyzed.

Baer (1977) applied normal mode initialization by allowing

nonlinearity to affect the initial conditions in such a way as to

eliminate gravity-inertia waves in the initial conditions and prevent

most of them from occurring during the time integration. Baer assumed

A

the initial vorticity was accurate. He then adjusted the geopotentials
and divergence so they were compatible with the vorticity field. 1In
effect, the high-frequency waves (external gravity and fastest

internal gravity waves) were eliminated. However, the slower gravity-

inertia modes have speeds comparable to Rossby modes and were not
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Baer and Tribbia (1977) extended Baer's (1977) technique to
any prediction model of a planetary fluid of reasonably small Rossby

number.

1.2.4 Geostrophic adjustment

Geostrophic adjustment was discussed briefly in Section 1.1.2.
However, @kland (1970) reached some conclusions which are important
to this work and they will be presented here.

Pkland found a linear solution to a simple linear baroclinic
model for given initial conditions. The solution consisted of two
parts: (1) high-frequency gravity-inertia waves, and (2) low-frequency
gravity-inertia waves which effect a balance between the mass and
momentum fields. @kland believed that the solution to the general
analogous initial-value problem, if it could be derived, would consist
of two parts; the one being high-frequency gravity-inertia waves and
the other the balanced mass and wind fields which exhibit much lower
frequency.

fkland stated that gravity waves may be suppressed by damping or
propagation away from the area of interest. A damping integration
scheme such as the Euler-backward scheme could be used but the slower
internal gravity waves move at about the same speed as the Rossby modes.
Hence damping the slower gravity-inertia waves would also damp the
waves of interest. Dispersion of the wave energy from the source would
be effective for waves with high group velocities. If the initial

data created waves of small group velocity, then those waves would
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disperse slowly and the adjustment would be slow, a situation to be
avoided. In contrast with baroclinic models, barotropic models of
deep motions contain only one mode and it 1is fast (an extermal gravity
wave with a speed of about 300 m s-l). Therefore, the adjustment in
barotropic models is relatively rapid.

Pkland conducted two experiments with a 2-level baroclinic model.
The model was allowed to run for 24 hours. Experiment I was the next
24 hours of the forecast. In Experiment II, the divergence was
removed from the initial conditions before the second 24-hour forecast
was begun. He plotted the root-mean-square (RMS) values of the local
rate of change of surface pressure and the RMS values of omega (the
vertical velocity in pressure coordinates) at about 500 mb. The
pressuré curves were more indicative of external gravity wave activity.
Gravity wave activity can be visualized as the effect of all gravity
waves simultaneously acting to modify the balance between the mass and
momentum fields. This activity was greatest for the nondivergent
initial conditions (Experiment II). The RMS omega graphs were more
indicative of the intermal gravity-inertia wave activity. This

activity contained less noise in the case that contained the divergence

(Experiment I).
1.2.5 Balancing on sigma versus pressure surfaces
Most PE models today employ pressure or normalized pressure (sigma)

as the vertical coordinate. Reasons include: upper air data are

reported on standard pressure levels; density does not appear explicitly
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in the model equations; and, the boundary conditions at the ground are
easier to formulate. The mesoscale model developed at Penn State (see,
e.g., Anthes and Warner, 1978, hereafter referred to as AW) uses the
sigma coordinate system. In the initialization of this model,
geopotentials are calculated on pressure surfaces. Balanced temperatures
are then derived and the winds and temperatures are interpolated to the
model sigma surfaces.

Since the nonlinear balance equation has been used, the model
initial conditions have been nondivergent and the initial vertical
velocity (omega) at each grid point should have been zero. However,
Warner et al. (1978, hereafter referred to as WAM) reported that small
omega values on the order of 10 mb d-l are introduced on the sigma
surfaces in the interpolation from pressure to sigma surfaces. In
other words, the initial balance has been altered. These omega values
on sigma surfaces are largest where terrain slopes are greatest and
hence have not necessarily corresponded to meteorological features.
Since the model~-generated omega values were much larger, the small
initial omega values have not been considered to be a problem.

An alternative approach has been to interpolate the model
variables to sigma surfaces prior to balancing. Sundqvist (1975)
interpolated observed geopotentials to sigma surfaces and then used
the nonlinear balance equation to calculate the stream function on
sigma surfaces. He used a hemispheric five-level model with a grid
length of 300 km at 60°N. His scale analysis of the divergence equation
in sigma coordinates indicated that the nonlinear balance equation was

appropriate for his model. The initialization on sigma surfaces
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reduced initial gravity-inertia wave oscillations when compared with
initialization on pressure surfaces and interpolation to sigma
surfaces. However, an initialization on sigma surfaces with orography
included produced mora gravity-inertia wave oscillations thiau an

initialization with no terw:ain.

1.2.6 Effect of divergent initial conditions

Phillips (1960) pointed out that the removal of gravity-inertia
waves from even simple models is not just a matter of specifying
initial geostrophic or nondivergent flow. Small values of divergence
were actually needed in the initial conditions to suppress these
waves. To specify the initial divergence in baroclinic models,
Phillips proposed various forms of the geostrophic omega equation. The
adiabatic geostrophic omega equation relates vertical motion to the
advection of temperature and vorticity.

Warner (1972) initialized jets in barotropic channel and

hemispheric models. He used the following initializations:

(1) geostrophic,

(2) mass field in balance with the fully divergent wind field,
(3) mass field in balance with the nondivergent wind field,
(4) quasi-gradient, and

(5) backward-forward integration about the initial time (a

type of DI).
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The geostrophic initialization was clearly inferior as curvature is
neglected. The most important finding relevant here was that the
initializations including divergence in the initial conditions ((2)

and (5)) produced the least gravity-inertia wave noise.

1.2.7 Previous divergent initialization techniques and their effect

on precipitation predictions

The initialization of the divergent component (hereafter referred
to as divergent initialization) has been attempted by several
researchers. Houghton et al. (1971) obtained omega values from a
diagnostic equation similar to the omega equation. Their omega
equation did not contain a diabatic term. The coarse-mesh grid used
had grid points at five degree intervals in latitude and longitude. The
divergent initial conditions had a small effect on the dynamic variables
at first, no effect after 12 hours, and the same level of noise as the
nondivergent initial conditions. The initial conditions were not
saturated where vertical motion was present and the effect of divergent
initialization on precipitation was not evaluated. They stated that
it may be that poar model resolution of the small scales inherent in
the vertical motion field contributed significantly to the lack of
forecast improvement.

Lejends (1977) used the quasi-~geostrophic omega equation without
a diabatic term to obtain omega fields on a coarse-mesh grid (grid
increment 300 km). The continuity equation was then used along with

a relaxation procedure to convert the omega values to velocity
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potentials. After adding the divergent component to the initial
conditions, he found a higher precipitation rate than the nondivergent
forecast for the first four hours, a lower precipitation rate from

4 to 10 hours, and the same noise level as nondivergent initial
conditions. The moisture field initially was not saturated. The
effect of divergent initialization on the dynamic variables was not
reported. Although the precipitation forecast was more realistic, it
was significantly less than the observed precipitation. We would
expect that after the model has reached a balanced state internally,
the initial divergent component would no longer be important. Instead
the model would have produced a divergent component compatible with
the model's nondivergent component.

Dey and McPherson (1977) initialized the divergent component in
thé NMC coarse-mesh hemispheric PE model., The initial balanced state
was derived from observations. The divergent component was derived
from a model forecast valid at the same time. A vertical velocity
equation was not used. Dey and McPherson had thought that divergent
initialization might be beneficial if applied over several forecast
cycles, but the divergent initialization caused only small changes in
both the global analyses and forecasts. The only differences in the
precipitation forecasts occurred in areas of very light precipitation
and therefore the significance was difficult to assess. They concluded
that divergent initialization neither degraded nor improved the
performance of the NMC global system. Additionally, Dey (personal
communication) reported that a forecast divergent component that was

applicable 5 days before the initialization time was inadvertently
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added to balanced initial conditions in one experiment and no
significant change in the forecast resulted.

Lubeck et al. (1977) have performed divergent initialization
experiments with a global spectral model. They concluded that the
divergent initialization had a relatively small effect on the forecast
dynamic variables. A semi-implicit integration scheme was used to
smooth the high frequency oscillations. Orography was not included
in the experiments. Also, the model was dry and therefore the effect
of the divergent initialization on precipitation could not be evaluated.

Smagorinsky et al. (1967) did experiments with a global 9-level
PE model. They used a form of the omega equation with no diabatic
term. The experiments started with a divergent initialization produced
almost the same precipitation as forecasts started from nondivergent
initial conditions.

Benwell et al. (1971) used a 10-level PE model for divergent
initialization experiments. They reported slightly larger precipitation
amounts with nondivergent initial conditions.

Divergent initialiéation has also been used in hurricane models.

In hurricanes, the divergent part of the wind is large and forecasts
beginning with the total wind have been more successful than those
started from the nondivergent componment only. Miller et al. (1972)
obtained the stream function and then temperatures were derived. The
quasi-geostrophic omega equation with a diabatic term was solved for
omega values which are in turn used in the continuity equation to obtain
velocity potentials (presumably the relaxation boundary condition was

one of constant velocity potential). The total wind was obtained by
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combining the divergent and nondivergent parts. Temperatures and winds
were then forecast. From that forecast, the time dependent terms in
the complete divergence and omega equations could be evaluated. The
heights, temperatures, and omega values were recalculated. The process
was repeated until the heights and omega fields were relatively stable.
This process was similar to DI. The areal extent of their precipitation
forecasts agreed with the observed rainfall. However, the forecast
precipitation amounts were too low. The model atmosphere was not
saturated initially and the forecast model did not contain a convective
precipitation parameterization. The adequacy of the initial precipitation
rate was not evaluated. ‘

Mathur (1974) used an omega equation similar to the quasi-geostrophic
omega equation but it did not contain a diabatic term. The omega values
were then used in the continuity equation to obtain velocity potentials.
Again, presumably a constant value was used as the boundary condition
on the velocity potential. The meshed grid increments were 37 km on the
interior and 74 km on the exterior. The hurricane studied occurred 3
entirely over the ocean and observed precipitation fields were not
available.

In summary, there has been a lot of work on the various aspects
of the initialization problem. The work to date on divergent

initialization has been primarily on the large or synoptic scale. On

L BT AR SR I

that scale, the divergent initialization has had little if any effect

on the forecast. The divergent initializations on the mesoscale have

been for hurricane models. The resulting forecasts were evaluated by

comparing forecast versus observed track and intensification. The
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adequacy and suitability of the divergent initializations as compared
with nondivergent initializations were not evaluated. The effect of
divergent initialization on precipitation forecasts was not closely
scrutinized. Finally, diabatic heating information and asynoptic

data were not utilized in the initialization schemes.

1.3 Synoptic scale versus mesoscale divergence values

Before any further discussion of the differences between the
synoptic and mesoscales, we will present a more quantitative definition
of the scales. In Table 1, we adopt Orlanski's (1975) scale definitions
but we have subdivided the meso-B scale into upper and lower portiomns.
In subsequent sections, synoptic scale will refer to meso-a and larger
scales and the term mesoscale will refer to the upper meso-8 scale

unless otherwise noted.

Table 1. Scale Definitions.

Scale designation Scale range (km)
meso~y 2-20
meso-8 20-200
lower meso-B8 20-60
upper meso-B 60-200
meso~a 200-2000
macro-f 2000-10000
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As discussed in Section 1.2, divergent initialization on the
synoptic scale had little if any influence on the precipitation
forecasts. We will now attempt to gain some insight into why divergent
initialization has not been successful on the synoptic scale but might
be successful on the mesoscale and smaller scales. Let V be a
characteristic velocity and Ax a characteristic horizontal model grid
increment. For the scales in Table 1, 10 m s-l is a characteristic
velocity. For characteristic grid increments, let us compare a

synoptic model grid increment Ax, = 300 km, an”upper mesn-8 scale grid

1

increment sz = 100 km, and a lower meso-f scale grid increment
Ax3 = 30 km. We can now compare typical divergence values for the
three different grid increments.

We know from the divergence theorem that the net divergence over
the global 500-mb surface is zero. We would expect the same result to
be approximately correct for a hemisphere. 1In fact, as we will discuss
in more detail in Chapter 2, the net divergence on a constant pressure
surface over an area of about 3500 km on a side averages almost to
zero. However, at grid increments on the order of Ax3, there exist
phenomena such as thunderstorms that possess large divergences. These
divergence patterns could easily dominate over a small grid and produce
large net divergence at a given level.

Since V is the same for each length scale, and since divergence
is of order V/Ax, we expect an order of magnitude larger divergence
values as we progress from Axl to Ax3. The grid increments Axl, Ax2,

and Ax3 each differ by a factor of three but the area contained within

each grid square is almost an order of magnitude different. That is,
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(Axl)2 v lOS kmz, (sz)2 ~ 104 kmz, and (Ax3)2 N 103 kmz. Therefore,

we can visualize a much larger net divergence over an area (Ax3)2 than
over an area (Axl)z.

Thus, the divergence at a grid point can be larger in mesoscale
models than in synoptic scale models. Because divergence is the forcing
function in the Poisson equation for velocity potential (and hence the
divergent component), we expect a mesoscale divergent component of
greater magnitude than on the synoptic scale. In other words, the
divergent component may well be a significant ingredient in mesoscale
model initial conditions while previous research has indicated that it
is not significant in that réspect on the synoptic scale. We will
accomplish a scale analysis in Chapter 2 to see how significant the
divergence can be expected to be on the mesoscale but we have demonstrated
here in qualitative terms that, if divergent initialization is to
significantly affect 2 precipitation forecast, it would most likely

occur on the mesoscale and smaller scales.
1.4 Research objectives

To date, precipitation forecasting with NWP models has not been
very accurate, especially in cases of significant precipitation.
Accurate and timely precipitation forecasts on the mesoscale would be
of great economic and other value in times of flash floods, squall
lines, heavy precipitation over large areas such as hurricanes, etc.
Therefore, a divergent initialization procedure which improves
mesoscale NWP model precipitation forecasts would be an important

contribution.
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A general divergent initialization procedure developed in this
thesis can be described as follows: a vertical velocity equation
diagnoses vertical velocities from observed meteorological fields.
Velocity potentials are then derived from the vertical velocities with
the continuity equation and knowledge of appropriate boundary conditions
on velocity potential. Next, the divergent wind components are
obtained from the velocity potential. Geopotentials are calculated
on sigma surfaces using a balance equation with contributions from
both the nondivergent and divergent wind components. Finally, balanced
temperatures are derived via the hydrostatic equation. Note that the
vertical velocity and divergence fields are diagnosed. We cannot
accurately measure divergence directly because the errors in the wind
observations are on the order of magnitude of the divergent wind
component. Therefore, we derive a vertical velocity equation that
defines what vertical velocity field would exist for a given set of
dynamic and thermodynamic variables.

Questions to be addressed in this thesis include:

General:

(1) What are the differences between divergent initialization
on the synoptic and mesoscales?

(2) Does the inclusion of a divergent component on the
mesoscale improve the ensuing forecast, especially
precipitation rate and amount? Analogously, does the
model remember the divergence as introduced by the

initialization?
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(3) Do modeled precipitation systems recover their "correct”
intensity later in the forecast, after a nondivergent
initialization, or are the precipitation rates throughout
the forecast adversely affected by the incorrect vertical
velocities and latent heat release produced early in the
forecast by the lack of initial divergence?

(4) What form of the omega and balance equations should be

used on the mesoscale?
Specific:

(5) Can the vertical velocities be diagnosed to sufficient
accuracy to be useful in the divergent initialization
procedure?

(6) What boundary conditions should be used on stream function,
omega, and geqgpotential?

(7) The continuity equation is used to derive velocity
potential from vertical velocity. How should the
boundary conditions on velocity potential be specified

to achieve maximum accuracy on the domain interior?

The forecast model that will be used for these experiments is
the mesoscale NWP model developed at The Pennsylvania State University
(see WAM, AW). 1In Chapter 2 a scale analysis of the relevant equatioms
as well as a thorough analysis of the appropriate boundary conditions
for the required dependent variables will be provided. 1In Chapter 3,
a brief description of the forecast model will be given. The data at

the initial and final synoptic times, the observed precipitation, and
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a discussion of the synoptic situation chosen for study will be
presented in Chapter 4. In Chapter 5, we will develop the finite-
difference form of the omega equation which will be used to determine
vertical velocities. The omega equation will then be applied to the
data set. In Chapter 6, the finite-difference form of the balance
equation will be derived from the model equations. In Chapter 7,

the finite-difference balance equation will be applied to the chosen

data set. Chapter 8 will contain the summary and conclusions.
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2.0 DEVELOPMENT OF THE DIVERGENT INITIALIZATION PROCEDURE

In this chapter, we will first state which forces are considered
in the forecast model developed at The Pennsylvania State University
(PSU). Then we will perform a scale analysis of the complete
vertical velocity and divergence equations. These scale analyses
will specify which terms must be retained in the respective equations
for use in the specific divergent initialization procedure. Finally,
we will examine which boundary conditions should be employed for the
various second-order elliptic partial differential equations (PDEs)
which arise in this scheme. We shall see that the proper specification
of boundary conditions is important to this inicialization procedure.
The general framework for the divergent initialization procedure will
be outlined whereas the specific technique for the initialization of
the ?SU model will be addressed in later chapters.

Before we can perform the required scale analyses, we need to
know what forces are considered by the PSU model. That is, we need
to know what form of the equation of motion is used so that we can
derive consistent vertical velocity and divergence equations. The PSU
model considers the pressure gradient force, the Coriolis force,
gravity, and the vertical frictional force in the planetary boundary
layer (PBL) only. Additionally, horizontal frictional forces are
used by the model at every level, but for numerical rather than

physical reasons.
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2.1 Scale analysis of the vertical velocity equation

Scale analysis is a technique which permits the determination
of what terms in a given equation are important, based on characteristic
values of physical variables and characteristic scales in space and
time of the class of phenomena of interest. Here, we are interested
in the upper meso-8 and larger scales (e.g., baroclinic waves).
The scale analysis presented here, through (2.19), closely

follows that of Williams (personal communication). We define

L = characteristic horizontal scale (roughly a quarter
wavelength of the disturbances considered)
T = characteristic time scale

V = characteristic horizontal velocity

. The approximate magnitudes of derivatives can be estimated as follows:

Ju v v

x "3y 'L . (2.1a)
Ju \'

™ A = . (2.1b)

The time scale is generally given by
L
T o, 2
v~y (2.2)

Here we will use V~ 10 m s-l for the synoptic and mesoscales, L ~ 1000 km

for synoptic-scale motions and L * 100 km for mesoscale features.

TTT e R R WA v 3 e At e N

I



— emmy ey ey S @ AR S s as s SRR AED S BN &

31
The Helmholtz theorem states that a velocity vector can be

separated into nondivergent and divergent (irrotational) parts:

V= YW + v (2.3)
where

v, = k x 7y (2.3a)
and

YX = Uy . (2.3b)

In (2.3a) and (2.3b), ¢ is the stream function and x is the velocity
potential. Since we know that the magnitude of the nondivergent wind is
on the order of the observed wind for the scales (upper meso-g and

larger) considered, we use

VvV A~V (2.4)
for the scale of the nondivergent wind. On the other hand, the
divergent wind is generally an order of magnitude smaller. Therefore,

we use

VX v R,V (2.5)
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where R1 v 0.1, but for the upper meso-B and larger scales of motion

which we consider here, R, could be as small as zero or as large as

1
0.3.

In addition to those scaling parameters, we will use

Tl
b L
T

and
df d¢ f
g = Vf = iy - 2Q cos ¢ dy ~ A
for mid-latitudes. If the wind were geostrophic, then
Vo v £V

Now we separate the geopotential into two parts.

¢ = ¢(z) + ¢’

\ v e e ain o e

(2.

(2.

(2.

(2.

(2.

(2.

(2.

6a)

6b)
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In (2.6g), ¢' is the perturbation geopotential and Ekz) is taken from
the standard atmosphere. With (2.6a), (2.6f), and (2.6g), we obtain

(2.6h).

1
{;m £V or ' v fVL (2.6h)

Even though the wind is not geostrophic on the upper meso-8 scale,

(2.6h) is adequate for scaling purposes.
2.1.1 Pertinent equations in Z coordinates

We utilize the vertical coordinate Z which was first used by

Phillips (1963):

z=-~1mE& . 2.7
pO

Z is related to actual height, h, and geopotential ¢ by the equation of

state and the hydrostatic equation:

= - pg 3B _ 3¢
RT = pa P8 3 -3z (2.8)
From (2.8) we see that
) 3
-p 3; =357 - (2.9)
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One advantage of Z is that it approximately equals the actual height

divided by the scale height. That {is,
h
Zn i (2.10)

where H = RT/g is the scale height. For the atmosphere, H ~ 8 km.

Therefore, for the troposphere,

Z ] (2.10a)
and

.1 . (2.10b)
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. (2.11)

The horizontal vector equation of motion in Z coordinates which

contains the forces considered by the PSU model is

v ) p
R+y-vy+za—z+v¢+f xV-Fr=0 . (2.12)

The continuity equation in p coordinates is

v+ a0 . (2.13)
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Using (2.11) and (2.9) to modify (2.13), we obtain the continuity

equation in Z coordinates:

vy+oiso . (2.14)
With the hydrostatic equation, the first law of thermodynamics can be

written

3 3¢ yy 523 3¢ =
st oz T UV T 2z(ar T K9 = xQ (2.15)

where k = R/cp and Q is the heat added per unit time and mass.
2.1.2 Derivation of the vertical velocity equation

To obtain a vertical velocity equation, we must first have a

vorticity equation. Operating on (2.12) with V x yields

% 4y

Y Vg + YX-V; + Yw'vf

v

. 3;
. ~2 4 .
+yx VE+Z >+ D + 2D (2.16)

v v

With (2.6g), (2.15) can be rewritten as
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L
éso_,,Y

3_ v 39" R T M
at 9z Vazr YV @

4
(2.17)

+Z %Z(%%_ + k') -xQ =0
where
1) = =&+ 9
- R(%% + «T) (2.18)

3T
32)

A1

Cc

2
- LBl .
T 7p

I'is a static stability because it is proportional to the difference
between the dry adiabatic lapse rate and the standard atmospheric
lapse rate.

We derive the vertical velocity equation by operating on (2.16)

with fo %E’ subtracting VZ of (2.17), and reordering terms:

r(z)v’z - f02 %% + v%2 %E(S%l-+ ko)
T1 T2 T3a T3b
(2.19)
N AN AR 7Y, &
T4 5 T6
Ia I1 Ia

S u e R




37
2 39’ 2 d 5 3L
VYXVBZ+KVQ+fanZG
T7 T8 T9
I1 1 II
+ £ é—-VxFr + f 2—-V VE + f 2 vV .Vf
YA ~ o 32 ~y o 32 ~
T10 T1l1 T12
I1 I1I T11
av v
3 3 L.us o =¥ 3 Re97 x —X
+ f 3z zD + fo 37 k-VZ x 57 + fo 37 k*VZ x 37 (2.19)
(cont.)
T13 Tl4 T15
II II IIT
2_3g _23_g2 3¢’
+ fo at a3z at v 3z
T16 T17
In the derivation of vertical velocity equations, it is usually
assumed that the local rate of change of the actual vorticity equals
the time rate of change of the geostrophic vorticity (hereafter
called the geostrophic vorticity assumption), where the geostrophic
vorticity is
12
Cg =< 9% . (2.20)

We make this assumption here, and will return to it in Section 2.1.5.

.
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2.1.3 Scale analysis of the vertical velocity equation
From the continuity equation (2.14), we obtain
2R T (2.21)
since D n Rl % .

Table 2 contains a scale analysis of (2.19) which includes a
scaling factor for each forcing function. First, consider the synoptic
scale, where L ~ 1000 km. For mid~latitudes, that implies Ro ~ 0.1.
The value of CD is taken to be ~ 0.001 (Anthes, 1978) and H is ~ 10 km.
For this length scale, L/a ~ 0.1. We choose a precipitation rate of
0.1 cm h-l as typical of a synoptic-scale grid square (R2 = 0.1 in T8 in
Table 2). Examination of the scale factors of (2.19) reveals that
the forcing functions T4, T6, T8, and T1ll are of order 10-14 while
terms T5, T7, T9, T10, T12, Tl1l3, and Tl4 are an order of magnitude
smaller. The largest forcing functions represent differenéial
vorticity advection by the nondivergent wind, the Laplacian of
temperature advection by the nondivergent wind, the diabatic term, and
the beta or Coriolis term. These are important physical processes on

the large scale. For divergent initialization on the large scale, the

i
four largest forcing functions should be used in the vertical velocity g

equation. It should be noted that three of the four largest terms
(T4, T6, and T1ll) are the forcing functions of the quasi-geostrophic
vertical velocity equation. This is a well-known result (e.g., see

Haltiner, 1971).
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Table 2. Scale analysis of the forcing functions
in the vertical velocity equation.
Term Scale
designator factor
% WAL Vgl¥, 1V
RoL LIL Ro L3
R, .3
TS 5 v R, T4 v == L
1 Ro .3
L
1 1 V3
Té6 T6’\:—2VfVL’\lE-—3
L L
R, 3
T7 T7 ~ R, T6 ~ LV
1 Ro _3
L
T8 Let R2 be a precipitation rate of 1 cm h-l. Then,

for each em™,

R, =1g h-l

n 600 cal bt

2400 joule pt

4

A 1 joule s—'1

Therefore, Q » R2 per unit mass in mks units and

[3: R,R
2 172
T8’\a 2:\,__._2._

v
T9 T9 ~ R L
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Term
designator

T10

T11

T12

T13

T1l4

T15

T16

T17

Table 2 (Continued)

Scale
factor

The model friction term in the bulk-PBL parameterization

(see AW) can be scaled

Ps Py O 32 Pge 0 3Z "8 D

1

Therefore, T10 ~ Ro

T11 ~
T12 ~ R; T11
T13 ~
T14 & T13 n zo o

T15

4

~
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—
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e
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T16 ~

v
T17mL

40

i apan -




41

2.1.4 Determination of the mesoscale vertical velocity equation

On the mesoscale, L ~ 1000 km. For mid-latitudes, that implies
Ro v 1 and L/a ~ 0.01. We take a precipitation rate of 1 cm h-l as
being typical of a mesoscale grid square (R2 = 1 in Table 2). Using
these values, the relative order of magnitude of the forcing functions
in (2.19) except for T1l6 and Tl7 is indicated in Roman numerals
underneath the terms in (2.19). The largest forcing function is the
diabatic term, T8, with a value of order 10-11. Therefore, in areas
where precipitation is occurring, the diabatic term dominates the other
forcing functions on the mesoscale. Terms with a Ia (T4 and T6) are
an order of magnitude smaller in precipitation areas. These terms
represent differential vorticity advection and the Laplacian of
temperature advection. Note that these terms will be the most important
terms in areas where no precipitation is occurring. Terms with a II
(T5, T7, T9, T10, T13, and T1l4) are of the same order but are an
order of magnitude smaller than the terms with a Ia. Forcing
functions with a III (Tll, Tl12, and T1l5) are of the same order but are
an order of magnitude smaller than the terms labeled II.

The goal of this research is to develop and test a divergent
initialization technique on the mesoscale. Since the divergent
component is an osrder of magnitude smaller than the nondivergent
component on the mesoscale, and since we desire to diagnose the
vertical velocities as accurately as possible, we will retain terms of
first and second order and discard only those terms at least two

orders of magnitude smaller than the most significant terms. That is,
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we will keep terms labeled I, Ia, and II while discarding terms

labeled I1I. Therefore, the final mesoscale vertical velocity

equation consists of terms Tl1, T2, T3a, T4, T5, T6, T7, T8, T9, T10,

T13, and T1l4 of (2.20) and will be referred to as (2.22).

The omega equation corresponding to (2.22) is

2
2 dw _ 93 .
v (csm) + fca > = f 3p YW Vg
ap
Tl T2 T3
I

+ 3y v+ R oy wor + Ro%y Lor
ap ~x P "V P X
T4 T5 T6
II 1 I1
(2.23)
d 3 3z 3 Y
- _— —_— —_— — Ty
f 3P D+ 5p w P f ap weV 3p
T7 T8 T9
II I1 II
R 2 3
- — — g — Uxz
cp vQ + £ 3p g = X
P
T10 T1l1
1 II
where 9g is the static stability.
RT 36
= _ RL 38 2.2
o 28 3p (2.23a)
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Beneath each term is a Roman numeral indicating the term's relative
importance on the mesoscale. Eq. (2.23) with appropriate boundary
conditions will be used in Chapter 5 to diagnose omega fields from
real data.

It is interesting to note the differences between the synoptic
and mesoscales. The beta or Coriolis term is a first-order term on
the synoptic scale but is negligible on the mesoscale. That is, as
we go to smaller scales, the Coriolis force is less important and
the wind is less geostrophic. The other significant difference between
the scales is that although the diabatic term is important on the
synoptic scale, it is relatively more important on the mesoscale.

While the diabatic term should be included on the synoptic scale, it

is even more important to include it on the mesoscale. In other words,
local forcing by latent heating is more important on smaller scales.

We expect that the vertical velocities to be diagnosed on the mesoscale
in Chapter 5 will reflect the diabatic effect to a larger degree than
the other forcing functions.

For divergent initialization to succeed, the initial divergence
must be remembered by the model. That is, it must be supported by
the model. Otherwise, the initial divergence will be dissipated by
internal gravity waves. The initial divergence must be balanced by
latent heating, especially on the mesoscale. If the divergence is not

maintained by latent heating, it will not be remembered. Latent
heating should occur immediately (in the first time steps of the

forecast) in areas of upward motion. Therefore, those areas should

ﬁi}’eﬂt- BTIR T W R
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initially be saturated for stable layers and the convective parameteriza-

tion scheme should produce convective heating in unstable moist layers.
As stated in Chapter 1, divergent initialization on the synoptic

scale has had little effect. There was little effect on the dynamic

variables and a slight if any effect on the initial precipitation

rates. Where the omega equation was used in the determination of the

divergent component, the omega equation did not contain a diabatic

term. Although the initial moisture fields were not given, we speculate

they were not initially saturated in areas of upward motion. Hence the

initial divergence would not be sustained by the release of latent

heat. Also, some of the terms in the vertical velocity equation that

are most important on the synoptic scale such as vorticity advection

are more susceptible to initialization-related noise. It is therefore

possible that the initial divergence was dissipated before it could

effect the initial precipitation rate. We will later show that on the

mesoscale, the initial divergence is retained by the forecast model.

It is possible that the divergent initialization procedure presented

here could produce better results than those previously obtained if

applied on the synoptic scale.

2.1.5 The geostrophic vorticity assumption

In the derivation of the vertical velocity equation in Section

2.1.2, we assumed that the local temporal rates of change of the

actual vorticity and the geostrophic vorticity were equal. Without
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this assumption, the vertical velocity equation would be predictive
rather than diagnostic.

It is well known that the geostrophic vorticity assumption is a
good approximation on the synoptic scale where quasi-geostrophic
theory applies. In fact, this assumption has often been used to
obtain the vorticity field from the observed height field rather than
from wind observations. Scale analysis was applied to terms T1l6 and
T17 of (2.19) as shown in Table 2. We see immediately that the terms
are almost equal in magnitude and opposite in sign. It first appears
that the geostrophic assumption will be valid at all scales. We know,
however, that where the effects of curvature become important or
where the divergent component is large such as in gravity waves, the
geostrophic vorticity assumption is not at all accurate. For gravity
waves, the scale analysis breaks down because the advective time
scale is no longer appropriate for terms T16 and T1l7 of (2.19).
Therefore, if this divergent initialization scheme were applied in
the future to smaller scales, terms T1l6 and Tl7 may have to be included
in the vertical velocity equation used.

Finally, on length scales where the geostrophic vorticity
assumption breaks down, the terms labeled with a III in (2.19) may not
be negligible in comparison with the I and II terms. In other words,
the specific vertical velocity equation used for the divergent
initialization of the PSU model depends on the smallest length-scale
feature that will be permitted. The smallest permissible length scale
depends on the grid increment, the data availability, the method of

analysis, and the degree of smoothing.
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2.2 Scale analysis of the divergence equation

This scale analysis will be conducted analogously to the one in

Section 2.1. The same scaling relationships will be used.
2.2.1 Derivation of the divergence equation

Recall that (2.12) is the equation of motion in Z coordinates.
We obtain the divergence equation by operating on (2.12) with 7- to

obtain

v . 3V
Vest ¥ [ (VeIV] + V- (Z 520

(2.24)
2., .
+ V" + Ve(fk x V) - VeFr =0 .
Using (2.3), (2.24) becomes
3D
D gV e+
se * 7YY T,
T1 T2a T2b
1 I
(2.2%)
.oV
FV TV +V .7V ] +vez V¥
AR 7
T2¢ T2d T3a
11 111 11

= e vt e o o
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l w |
. + 77¢" - - .
+ VeZ 37 ? fz k x Vf yw

T3b T4 T3a T5b

I1I I I II
(2.25)
(cont.)

-k x VEY - 9Er =0

. T5¢ T6

III IT1

which is the complete divergence equation in Z coordinates.

I As is customarily done, we will neglect the time-dependent term
Tl. This leaves a diagnostic relationship which can be termed the
i complete balance equation. In Section 2.2.4, we will analyze the

effect of neglecting this term.
2.2.2 Scale analysis of the balance equation

We will examine (2.25), term by term (see Table 3). For the
synoptic scale, where L ~ 1000 km and Ro ~ 0.1, terms T2a, T4, T5a,
and T5b are at least an order of magnitude larger than the other terms.
These terms are the advection of momentum, the Laplacian of geopotential,
the Coriolis parameter times the relative vorticity, and the beta term,

respectively. The equation containing only these terms is commonly

referred to as the nonlinear balance equation. A form of that
[ equation has been used in the nondivergent initialization of the PSU

model (WAM; Keyser, 1978; Anthes, 1978). It has been previously
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Table 3. Scale analysis of the divergence equation.
Term Scale
designator factor
2
v v v
Tl Tl'\l-ERlL'\,Rl 3
L
2
1.1 v
T2a TZaNLVEv'\,——i-
L
v2
T2b T2b ~ R, T2a v R, —%
1 1.2
L
vZ
T2c T2¢c ~ R, T2a v R, —
1 1.2
L
2 v
T2d T2d ~ R, T2b ~ Ry —5
1 1.2
L
2
1 v v
T3a T3a'\:LRlEV'\,R1L2
2
T3b 3b ~ R, T3a v R
1 1 L2
2
T4 TQN—szL'\:%;Y-E
L L
1 vv 1 Vz
T5a Tsa'\lﬁng'\a-ﬁ—o—?
£ 1 v1 1 L V2
R 2
1LV
T5c T5¢ v Ry T5b ~ Ro a |2
6 76 » LT10 of 2.19] g L1 ¥}
f V Ro H LZ
A —

:‘-ﬂlct')
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substantiated that the above terms dominate on the large scale (see,

e.g., Haltiner, 1971).

2.2.3 Determination of the mesoscale balance equation

As in Section 2.1.4, we use for mid-latitudes and the mesoscale,
L ~ 100 km, Ro ~ 1, L/a ~ 0.01, H~ 10 km, and CD ~ 0.001. With these
values, the relative order of magnitude of the terms in (2.25) is
indicated in Roman numerals underneath each term. As with (2.19),
the difference between I and II is an order of magnitude. Because
we are interested in a divergent initialization, we include the terms
containing the divergent component and, because we are interested in
accuracy to second order, we neglect terms labeled III (T2d, T3b,
T5c, and T6). Therefore, the final mesoscale balance equation is
composed of terms T2a, T2b, T2c¢c, T3a, T4, T5a, and T5b, and will be
referred to as (2.26). The difference between the synoptic and
mesoscale balance equations is the relative importance of the Coriolis
force on these scales. On the synoptic scale, the beta term is a
first-order term. On the mesoscale, the beta term becomes two orders
of magnitude smaller than the first-order terms.

In order to achieve maximum consistency with the forecast model,
which should help the model "remember' the divergent component, the
balance equation will be applied on sigma surfaces. Sigma is defined

by

P -P, . P-P,

ps - pt Px

(2.27)
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where p is the pressure of the sigma level, P is the pressure at the

model top, Py is the surface pressure, and p, = ps =P, Now, for

p. = 0, we can show

t

=7 (2.28)

v
7 . 5._3£ (2.29)
and T4 becomes

7 - [0 + RT vp] . (2.30)
Px

Therefore, the mesoscale balance equation in sigma coordinates is

Ve [V 9V +V YV +V V¥
[~w oot oex X ~¢]

v
.Y RT

+ 90 =L+ 7 . [7p + = vp] (2.3D)
30 Py

where VW and V. are defined on pressure surfaces. That is, if

VD‘YW = (, then Vo'Yw

the sigma surface. In this thesis, the terms nondivergent and divergent

is not necessarily zero because of the slope of

will always apply to pressure and not sigma surfaces.
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2.2.4 Effect of neglecting the local rate of change of divergence

The local rate of change of divergence was neglected in the
determination of the balance equation in Section 2.2.1. This
assumption is often made on the synoptic scale. The scale analysis in
Table 3 shows that Tl of (2.25) is an order of magnitude smaller than
the largest terms. We will show that this assumption is reasonable
on the upper meso-f scale.

We can examine the effect of the local rate of change of
divergence term in the diagnosis of geopotential. Let the entire

divergence equation be

v = -2 (2.32)

A one-dimensional analysis is sufficient and hence we can write (2.32)

as

2
3 ¢ 3D
AL 2.3
" 2 ot (2.33)
Ix
3D
Let It be expressed with a spectral representation as
3D _ & ikx
Yo De (2.34)

where D has dimensions of s.2 and Kk = 21/L is the wavenumber. Therefore,

we can write (2.30) as
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32 ~ dkx
__%._ -De (2.35)
IX
Integration of (2.35) twice with respect to x yields
; 6 ikx
i ¢ = :7 e +cgx +c, (2.36)

[V SIS T

where ¢ and ¢, are arbitrary constants. Therefore, the error in

of

Choose a typical mesoscale divergence of 10-5 s-l. The mesoscale

length scale L 105 m and the velocity scale V~ 10 m s~1 imply a

time scale of 104 s. Therefore,

9 -2
s

D~ 10”

Now (2.37) becomes

>

2

¢ ~ 1D .
error 2
4T

With (2.38) and L n 105 m, (2.39) gives

ey N e e aan G AN BN aan GEE R A SN R I -

geopotential associated with the neglect of this term is on the order

(2.37)

(2.38)

(2.39)

(2.40)
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Hence for the local rate of change of divergence term to be important
on the upper meso-£ scale, large values of divergence are required.
Fankhauser (1974) reported that %% was large in the vicinity of
a squall line but was small away from the active convection. With
this result and (2.40), we conclude that neglecting the %% term on

the mesoscale is an acceptable approximation. The term might become

important on smaller scales and may have to be included there.

2.3 Boundary conditions required by limited domains

The diagnostic equations for the mesoscale, derived in this
chapter, are second-order elliptic PDEs. For purposes of this
discussion of boundary conditions, they can be represented as Poisson
equations. For global or hemispheric models, boundary conditions have

not been a major problem. However, the attainable resolution has

been coarse at best. Limited-area models have been developed primarily

to obtain increased horizontal as well as vertical resolution. But,
because the limited-area domains have boundaries, boundary conditions
must be specified on the dependent variables or else the problem of
solving the equation is not mathematically well posed (Ames, 1977).
The specification of boundary conditions for limited-area NWP models
and their initialization schemes has indeed been a problem. 1In this
section we will examine the boundary conditions required by the
divergent initialization scheme for the following variables: stream

function, geopotential, omega, and velocity potential.
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2.3.1 Boundary conditions on the stream function

Several of the terms in the omega and divergence equations

require knowledge of the nondivergent wind. The nondivergent wind
is related to the stream function by (2.3a) and the stream function is

related to the vorticity field by

Yy =z . (2.41)

Vorticity is calculated at the interior grid points and § can be
calculated on the interior if we know wB. There are numerous methods
presented in the literature for the determination of wB (see, e.g.,
Phillips, 1958; Anthes, 1976; Brown and Neilon, 1961; Bedient and
Vederman, 1964; Hawkins and Rosenthal, 1965; Sangster, 1960; Shukla

and Saha, 1974; Schaeffer and Doswell, 1979; Stephens and Johnson,

1978; Endlich, 1967). We will present an appropciate method after
demonstrating what property the chosen method must possess. Before
presenting that method, however, we will look at another means of
avoiding boundary effects.

A method which may improve upon the results obtained by the
aforementioned authors has been used by Anthes (1976), Anthes (1978),
Keyser (1978), and Elsberry and Ley (1976), among others. The idea
is to initialize on a domain larger than that over which the model

will produce the forecast, thus minimizing boundary effects by moving

them away from the forecast domain. However, we choose not to use

this approach in this thesis for the following reasons:

j
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(1) It is not always possible to enlarge the domain.
For example, in certain situations, auxiliary rawinsonde
measurements are taken over limited areas (Hill and
Turner, 1977). Hence, there are no data on which the
enlarged initialization domain could depend. Also,
it is not always desirable tn enlarge the initialization
domain. Enlarging the domain could mean incorporating
ocean or other data-sparse regions where the boundary
values of the meteorological variables contain more
uncertainty than in data-dense regions. Thus expanding
the initialization domain could result in an inferior
initialization on the forecast domain.

(2) It is computationally inconvenient to enlarge ~he domain.

(3) We will show that, by taking a few reasonable
precautions, the boundary values of y (and x) can be
determined to sufficient accuracy for purposes of this

thesis without expanding the initialization domain.

Keyser (1978) analyzed the effect of boundary conditions on

the solution of a Poisson equation such as

v (x,y) = F(x,y) (2.42)

where the rectangular domain is defined in x and y by 0 < x < L1

and 0 7~y Dl' Following Morse and Feshbach (1953), that portion of

the solution due to ¢B for the right boundary (oRB) can be written as

- ik e .
ey




56
sinh nr X
2 bed Dl . nm Dl nm
¢RB(x’y) =5 T ) = sin 5=y J ¢(Ll,y) sin 5~ ¥ dy
1 n=1 sinh o L1 1 o) 1
1 (2.43)

There are four other terms in the total solution, one for each of the
other three boundaries and one for the forcing function. For this
discussion, we need to consider only one boundary. Since (2.42) is
linear, we may interpret (2.43) for a single harmonic without loss of

generality. Define u as

nm L1 x
sinh Dl EI
yo= . (2.44)
. amn
sinh — Ll
1

For a given distanc: from the boundary, for increasing wavenumber, the
value of u decreases. Therefore, u is called a damping factor. Keyser

plotted

b= f(—2L X (2.45)

and this is reproduced as Fig. 1. From this argument emerged two

very important conclusions (Keyser, 1978):

(1) The influence of boundary conditions on the solution
decreases exponentially with distance from the
boundaries.

(2) It is most important to accurately specify the large-

scale (low-wavenumber) variation of the boundary
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Fig. 1.

Plot of contours of u representing the
fractional damping of the boundary
condition at x/L = 1 as a function of
distance normal to the boundary and wave-
number (Keyser, 1978).
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conditions since amplitude errors for low-wavenumber
components of the boundary conditions damp less rapidly

with distance away from the boundary.

Keyser extended the analysis to a discrete domain but the conclusion

regarding correct specification of the large-scale variation of the
boundary conditions was unaltered.

Therefore, in examining the adequacy of the methods for
determining WB’ we need only concern ourselves with choosing a method
capable of correctly specifying the low-wavenumber variation of wB.
WAM, Anthes (1976), and Keyser (1978) report that when Anthes (1976)
method was used to evaluate wB’ the required correction to v

obs
(observed boundary normal wind component) was on the order of a

few tenths of a meter per second. Since the magnitude of vy itself
' was about two orders of magnitude larger than the correction applied,
| then the large-scale features are retained in the corrected Vi In

other words, since the observed wind was predominantly nondivergent,
‘1 vnObs was almost vy o We conclude that Anthes (1976) method may be

used to solve (2.41) in the determination of the nondivergent wind
for the scales studied here.

Anthes (1976) method is based on:

Wolw 4y (2.46)

where
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1
S § v, dS , (2.47)
obs

and where Lp is the length of the domain perimeter. First, c, is

B

computed from (2.47). Then, after one wB value is specified, (2.46)

is integrated around the boundary to obtain a complete set of wB values.
That is, the mean divergence over the domain is removed from v by
applying an equal correction to each boundary observed normal wzﬁz

component.
2.3.2 Boundary conditions on geopotential for the balance equation

We know from the discussion of the previous section that the
large-scale variation in geopotential must be accurately specified.
The usual method of calculating ¢B has been to assume that the boundary

winds are geostrophic and integrate
¥ _F (2.48)

around the boundary. WAM reported that this approach was unsatisfactory
because wind analysis errors accumulated around the boundary. Therefore,
WAM used the observed heights on the boundary. This did indeed
preserve the large-scale geopotential variation.

Keyser (1978) and Anthes (1978) used FNWC (Fleet Numerical
Weather Central, Monterey, California) analyses for numerous
initializations and subsequent forecasts. They claimed that the large-

scale geopotential boundary variation was preserved and hence
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®B = ¢B was an adequate boundary condition. That is, it did not
obs

introduce any significant error in geopotential on the domain interior.

Therefore, we adopt the use of observed boundary heights as the

boundary condition for the balance equation in this thesis.

2.3.3 Boundary conditions on omega for the omega equation

The omega equation will be solved by three-dimensional relaxation
and therefore boundary values of omega for the top, sides, and bottom
of the domain volume are required.

For the top of the domain (250 mb), we set omega equal to zero.
If the 250-mb level is the top of the features and circulations
being modeled, then this choice makes meteorological sense. Since
the 200-mb level is the top data level used, then there is really no
other reasonable alternative. Also, the model itself requires zero
omega at the top pressure level.

Omega is also set to zero on the side faces of the domain volume.
This is mathematically expedient but probably somewhat unrealistic.
The meteorologically interesting feature is normally placed near the
center of the domain. Hence there are usually no large divergence
values near the boundaries. With this precaution, omega values of

zero at the side boundaries approximately represent the correct large-

scale boundary variation of omega. We will adopt this precaution here.

The PSU model uses terrain heights as the lower boundary
condition on geopotential. The terrain in turn induces an omega at

the surface. The terrain-induced omega, w,s can be written
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w =-8R vy .gn (2.49)

where h is the terrain height. We use scale analysis to estimate the

importance of this effect. From (2.11), we can write

. (2.50)

Therefore, (2.49) becomes
L (2.51)

Using the scales B~ 10 kmy L ~ 100 km, V~ 10 m s-l, and a terrain

gradient of 0.001 (a 100 m rise in 100 km is not uncommon), we get

2t ~ 10-6 s-l. Note that in mountainous terrain, a slope of 0.01

would be more appropriate and it would be an order of magnitude larger.
These terrain-induced vertical velocities are indeed significant.

In more familiar coordinates, we get

6 S-l

. 2 -
w, = = pg 2, ~ 107 ¢b 10

(2.52)

=104 s tv10epal .

Vertical velocities in the mid-troposphere normally don't exceed
10 cb d“l except 1n sharp troughs and precipitation areas. We conclude
that the terrain effect omega values should be used as the lower

boundary condition for the omega equation relaxation.
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2.3.4 Determination of appropriate boundary conditions on velocity

potential

Velocity potentials are required so that the divergent wind
component can be supplied to the omega and balance equations. Using

(2.3b) and (2.13), we obtain

Vix =D (2.53)

or

= - 22 (2.54)

3p

We can solve (2.53) given values of omega and Xg-

Several methods for the determination of Xg have been used
previocusly (see, e.g., Brown and Neilon, 1961; Bedient and Vederman,
1964; Shukla and Saha, 1974; Endlich, 1967; Schaeffer and Doswell,
1979; Stephens and Johnson, 1978). Most of the above methods involve
at least one assumption. Two of the methods (Schaeffer and Doswell,
1979; Stephens and Johnson, 1978) have accurately separated observed
wind fields into nondivergent and divergent components. However,

here we will diagnose vertical velocities and therefore divergence

values. We want a divergent component corresponding to these divergence

values and not necessarily related to the observed or nondivergent
winds. We will develop a means of accurately specifying the large-

scale boundary variation of velocity potential.
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The divergence theorem may be written

I J V-G dA = § n-G ds (2.55)

where G is an arbitrary horizontal vector, A is the domain area, and s
is distance along the domain perimeter, the line integral being
positive in the counterclockwise sense. Applied to the velocity

vector, (2.55) becomes

J f VeV da = J J D da = § n-Vds . _ (2.56)

In words, (2.56) states that the integral of the divergence over the
entire domain can be calculated by integrating the normal boundary
componert around the boundary. That is, if the normal velocity
component integrates to zero, there is no net divergence over the
domain.

In finite difference form, (2.56) becomes

M-1 N-1 NBP
Ax I I Di 3 = I v (2.57)
i=2 j=2 3 k=1 "k

where M i3 the number of grid points in the y direction, N is the
number of points in the x direction, and NBP is the total number of
boundary points. Now, from the omega equation, we can calculate the
left hand side of (2.57). Therefore, we know the mean value of the

normal velocity component. Since %ﬁ-- 0, it follows that
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e = A.— = A.V—.g:—)-_x
v n YX ne vy ™ . (2.58)
3
Now we know the mean boundary value of 5 since
v = Y (2.59)
n on

where the subscript ¢ means the correct value.
The complete method for obtaining Xg with correct low-wavenumber

variation is as follows:

(1) Use (2.57) and (2.59) to compute the exact mean value
of the normal derivative of velocity potential required
to satisfy the known forcing function.

(2) Set x over the domain and Xg equal to zero.

(3) Begin to solve

¥"x =D (2.60)

by relaxation whare

2y 2 Maptt T gen ey T Xy T
4(ax)”

(2.61)

where Ax is the grid increment. Apply n iterations.
(4) With a one-sided difference, compute the mean boundary
value of %ﬁ-that currently exists on the domain after n
iterations (g% , where the subscript a means the
a

actual mean boundary value).
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(5)

(6)

o))
(8)

(1)
(2)

Compute

BADJ =

<|
]
gk

where the LHS of (2.62) is the mean correction that
must be applied to the existing §§~so that the known
boundary value, ;n’ will be realized.

Apply the mean normal derivative correction by

extrapolating outward from the first interior grid

point. That is, for each boundary point, compute

Xg = Xg_1 + Ax+BADJ

where Xg-1 is the value of x at the first interior
grid point.

Return to step (3). Repeat this cycle m times.

Xg now has the correct large-scale boundary variation.
Apply a direct solver (Rosmond and Faulkner, 1976;
Swarztrauber and Sweet, 1975) to obtain x over the
entire domain for the given X values and forcing

function.

The advantages of this procedure are:

It imposes no arbitrary boundary conditions.
The method 1is physically realistic and mathematically

sound. It is physically realistic because information

65

(2.62)

(2.63)
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about the known forcing function is transmitted

to Xg through the relaxation procedure. It is
well-founded mathematically because it forces the
boundary value of gg to approach the value it must

have for the given forcing field. We are interested

in the correct gradient of velocity potential and not

x itself since only the Y gradient has physical meaning.
The boundary values of x that result are those that
would exist if the domain were infinite. The method

is mathematically equivalent to using a Green's

function solution of (2.53) (Hayek, personal communication;

Morse and Feshbach, 1953). The applicable Green's function

for Cartesian coordinates is

G(x,xo,y,yo) = i—“ 1n [(x—xo)2 + (y-yo)Z] (2.64)

The solution to (2.53) is therefore (Morse and Feshbach,

1953)

x(x,y) = I { D(Xo,yo) G(X,xo,y,yo) de dyo (2.65)

where (x,y) is a boundary point and (xo,yo) is any
interior point where the divergence D is defined. For
each boundary point, (2.65) must be applied for every
interior point. Green's function solutions have the

advantage that no boundary conditions on Y are required.
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However, (2.64) becomes infinite as x approaches X

and y approaches Yoo Therefore, (2.65) is computationally
difficult to use in practice. Since we will now
demonstrate that the method presented here is effective,

we will use it in this thesis for the determination of
XB-

To demonstrate the validity of the Xg method, several numerical
experiments were performed on a 15 by 15 grid with a grid increment
of 100 km. The scenario was to generate an analytic yx field, compute
the divergence (forcing function) at each grid point, and calculate
;g. Then the X values over the entire domain were zeroed and the
method was applied. Table 4 contains a summary of the experiments.
Figures, however, are included only for Experiments 2.2a through 2.2d
since they are the most severe meteorological tests. For each experiment
the value of n in step (3) was nine. That is, nine relaxation scans
were made over the domain for each boundary normal component adjustment.

In Experiment 2.1, a circular initial velocity potential pattern
was placed at the center of the domain. For Experiment 2.2, the
center of the circular velocity potential pattern was shifted left to
a position near the left boundary (Fig. 2). For Experiment 2.3, the
initial x field was given by

0.75

X = A sin —437——— jax (2.66)
1
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Initial velocity potential field for
Experiments 2.2a through 2.2d, The

contour interval is 100 mZ s~1 corrfsponding
to a divergent wind speed of 1 m s™ .
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where A is the amplitude of the sine wave and here corresponds to a
divergent wind speed of 5 m scl. Note there is no y variation of .

In Table 4, MAXBDY is the number of iterations for which Xg was
corrected. For each experiment, Table 4 gives the ;g adjustment
applied (BADJ), the RMS (root-mean-square) error in u and Vs the
average RMS error, the percentage reduction in RMS error, and the
number of iterations (MAXBDY) for each experiment in which the method
was applied. The percentage reduction in RMS error is the percentage
by which the RMS error of the y gradient was reduced after Experiments
2.1la, 2.2a, and 2.3a.

In Experiment 2.2a, the final x pattern (Fig. 3a) has little
resemblance to the initial pattern (Fig. 2). The average gradient
error corresponds to a velocity of 0.35 m s_l. In Experiment 2.2b,
with the method applied for 54 iterations, the final x pattern (Fig. 3b)
looks much closer to the initial pattern. Experiments 2.2c¢ (Fig. 3c)
and 2.2d (Fig. 3d) show additional improvement in the Xg accuracy as
well as the average RMS error.

When this method is used to compute Xg and subsequently x, the
RMS error in the gradient of x is not completely eliminated. Instead,
the error decreases and then oscillates around some value as the value
of the boundary correction (BADJ) levels off. ILor example, Experiment
2.1b actually has a slightly smaller RMS error than Experiment 2.lc.
The maximum percentage RMS error reduction occurred at iteration 54 and
oscillated between 79 percent and 84 percent for subsequent iterations

through iteration 300. Therefore, it seems reasonable to establish a
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a. Experiment 2.2a. b. Experiment 2.2b.

A

¢. Experiment 2.2c. . Experiment 2.2d.

Fig. 3. Final velocity potential field for Experimen%s 2,.2a
through 2.2d. The contour interval is 10° m? -1
corresponding to a divergent wind speed of 1 m s~L.
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criterion that is a compromise between increased accuracy and increased
computational time. We observe that when BADJ changes by less than
10 percent over its previous value of nine iterations earlier, the
majority of RMS error reduction has already occurred. BADJ changed
by less than 10 percent at iteration number 45, 64, and 64 for
Experiments 2.1b, 2.2¢, and 2.3b, respectively. We conclude that, when
the method is used in a subsequent chapter to determine XB’ the
criterion for when Xg has been determined to sufficient accuracy 1s when
BADJ changes by less than 10 percent. At that point, a direct solver
will be applied to obtain the velocity potential on the domain interior.
We should also note that the initial x patterns for Experiments 2.1
(a, b, and ¢) and 2.2 (a through d) are severe tests of the method. An
average v"obs of almost 1 m s—l is larger than values normally

encountered (WAM; Keyser, 1978).

This method for the determination of Xg has several disadvantages:

(1) The method is an iterative technique and hence requires
more computation time than most noniterative techniques.
However, once the method determines a set of Xg values
with the correct low-wavenumber variation, iteration is
no longer required and a direct solver is used to obtain
velocity potential on the domain interior.

(2) Some forcing funcﬁion fields require more normal derivative
boundary corrections (MAXBDY) than others. This is
especially true if small values of the forcing function

occur near the boundary or if a large range of forcing
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function values occur over the domain (both conditioms
true in Experiments 2.2a through 2.2d). We normally

do not place a boundary in the vicinity of large values
of the forcing function (the meteorologically interesting
feature). That precaution will help minimize the effect

of this disadvantage.

To summarize this section, we should first state that for purposes

of divergent initialization, the methods which have been used previously

may be unacceptable because they do not accurately specify the low-
wavenumber variation in Xg* We have developed a method to determine
Xg in such a way as to insure the correct large-~scale Xg variation.

As previously stated, Keyser (1978) demonstrated that if the low-
wavenumber Xg variation was correct, then Y errors due to Xg were
insignificant in the domain interior. Therefore, this method for the
determination of Xg in conjunction with a direct solver can be used to
obtain an accurate solution of the Poisson equation for velocity

potential on a limited domain.

2.4 Chapter summary

The purpose of this chapter was to establish the divergent
initialization procedure that will be used. Since we will initialize
the PSU model, we stated which forces are considered in the model's
equation of motion.

In the first section, we derived a complete generalized vertical

velocity equation. Scale analysis was applied to demonstrate that the
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quasi-geostrophic vertical velocity equation resulted for the synoptic
scale. We then established the vertical velocity equation appropriate
for the upper meso-f scale. The diabatic term was an imporftant term
in precipitation areas on the synoptic scale but it was even more
important on the upper meso-f scale. In fact, on the upper meso-8
scale, the diabatic term dominated the other forcing functions. Also,
the Coriolis term was significantly less important than on the synoptic
scale.

In the second section, we derived the complete generalized
divergence equation. The nonlinear balance equation was shown by
scale analysis to be valid on the large scale. The balance equation
required for the upper meso-B scale was established and presented in
sigma coordinates. On the upper meso-B scale, the Coriolis term was
not as important as on the synoptic scale. We showed that the neglect
of typical values of the local rate of change of divergence was an
acceptable assumption on the upper meso-f and larger scales.

In the last section, using theoretical and mathematical tools, we
established what boundary conditions should be usad for stream function,
geopotential, omega, and velocity potential. A new method for the
correct low-wavenumber specification of Xg was presented and its
effectiveness was demonstrated for severe cases. A criterion for the
termination of the method was determined experimentally. This new
application was mathematically equivalent to a Green's function

solution of the Poisson equation.
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3.0 THE MESOSCALE MODEL

The PSU model is a general, predictive, hydrostatic, primitive
equation, meteorological model formulated in sigma coordinates. For
a complete description of the model, see AW and their references.
The model has many options available such as variable terrain, a
moisture cycle, and high-~ and low-resolution PBL physics. The model
is suitable for forecasting flows with characteristic horizontal
wavelengths of about 10-2500 km (meso-y through macro-8 scales)
under a variéty of meteorological conditions. It is indeed a

versatile tool.
3.1 General description of the model

The model equations described in AW are in flux form, where the
vertical coordinate o is defined by (2.27). A Lambert conformal map
projection will be used. There are equations for the u and v velocity
components, a thermodynamic equation, and continuity equations for
mass and water vapor.

For lateral boundary conditions during the model integration,

a linear interpolation in time between the balanced conditions at the
two nearest synoptic times is used. For example, for a 00 GMT
(Greenwich Mean Time) to 06 GMT forecast, the model uses boundary
values on u, v, T, 9, and q that are linearly interpolated in time

between the boundary values at 00 GMT and 12 GMT. These 'open"
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boundaries allow features to enter the domain at the inflow boundaries
and leave the domain at the outflow boundaries, without significant
reflection of wave energy.

A staggered grid is employed with u and v defined at points
("dot points") midway between where the other variables are defined
("cross points"; reference Fig. 4). At the lowest sigma level (¢ = 1),
P, ¢, and 6 are defined while p and p are specified at the top
(o = 0) sigma level. The dependent variables themselves (u, v, T,

w, ¢, and q) are defined at the forecast levels whereas at the
intermediate sigma levels, o and the vertical fluxes of u, v, T, and
q are defined (reference Fig. 5).

The time-differencing scheme used is the pressure-averaging
technique of Brown and Campana (1978). This scheme permits a larger
time step while meeting the linear stability (Courant-Friedrichs-Lewy
or CFL) criterion for the advection term. However, in preliminary
forecasts with the model, time splitting (the separation of the odd
time-step solution from the even time-step solution) was a problem.

As a result, Anthes (1978) and McNab (unpublished) incorporated a
low-pass time smoother (Asselin, 1972; Robert, 1966) into the model.
The subsequent model performance was improved. Unfortunately, because
of numerical stability considerations, the time smoother requires a
smaller time step.

The model employs both vertical and horizontal diffusion. In the
low~-resolution PBL version of the model used here, a simplified

version of Deardorff's (1972) bulk PBL parameterization is used. No
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g

Fig. 4. A portion of the staggered horizontal grid.
The horizontal velocity components are
defined at the dot points. All other variables
are defined at the cross points.
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Fig. 5. Vertical grid structure of the mesoscale model
showing vertical indexing and the levels at
which the variables are defined.
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other levels have vertical diffusion. The horizontal diffusion is
applied to each variablé'and level and is required for numerical
stability because the modél permits nonlinear interactions. The
horizontal diffusion scheme is that used by Smagorinsky et al. (1965)
plus a constant background value for additional smoothing if desired.
Additionally, Warner and McNab (unpublished) added the capability to
enhance the horizontal diffusion near the boundaries. For a variable-
size elliptical area defining the domain interior, the horizontal
diffusion is not enhanced. Outside that area, the variable portion
of the diffusion term is multiplied by a coefficient. The value of
that coefficient is one at the edge of the ellipse. For every grid
increment of distance away from the ellipse, the value is increased
by a specified amount (variable name SPONGE). That is, the enhancement
coefficient is equal to SPONGE times the distance in grid units that
the grid point is outside the ellipse. Therefore, the horizontal
diffusion increases as the boundary is approached. However, the total
value of the horizontal diffusion coefficient is restricted to 40
percent of the maximum allowed by a linear stability analysis.

The model's moisture and cumulus cloud parameterizations are a
simplified version of Anthes' (1977) scheme.

The PSU model has been tested and verified for a relatively large

number of cases (WAM; Anthes, 1978; Shaginaw, 1979).

PP

T AL W b kb ke TY

R 3 it i Bt 85




PGS

79

3.2 Specific model parameters used in this thesis

The domain chosen is a 30 by 35 grid with a grid increment (4x)
of 120 km. The domain is centered at 41N and 95W and therefore covers
most of the contiguous 48 United States (US). The time step required
for computational stability is 180 s.

The pressure at the top model sigma surface is fixed at 250 mb.
There are six layers between the seven sigma levels of 0.0, 0.25, 0.4,
0.55, 0.7, 0.85, and 1.0.

The specific value of the surface drag ccefficient, CD’ to be
used was difficult to determine. Anthes (1978) reported that the
value of CD consistent with the bulk PBL parameterization should be
between 0.001 and 0.003. Therefore, a value of 0.002 will be used
here for CD.

The variable enhanced horizontal diffusion scheme was tested for
SPONGE values of 0.0, 1.0, 5.0, 12.5, and 25.0 for a 120-km AX and the
data set to be described in the next chapter. In the version used
here, the size of the ellipse is such that the ellipse passes within
4Ax of the center of each boundary. The value of SPONGE chosen was
5.0, That is, midway between the corner points on any one side of
the grid, the enhancement factor would be 20, The SPONGE value of
5.0 was chosen because it represents a compromise between smoothing
the 2Ax noise that can penetrate the domain from the outflow boundary

and not noticeably smoothing the large-scale features of interest.
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3.3 Static initialization procedure
The initialization procedure utilized by WAM in previous
forecasts will be briefly covered here. Winds were subjectively
analyzed at the 850-, 700-, 500-, 400-, 300-, and 200-mb levels.
Vorticity fields were obtained directly from these wind analyses
using (3.1).
3 v 2 u
t %% 3y m 3.1
In (3.1), x and v are the horizontal coordinates of the Lambert
conformal map projection and m is the map factor. The stream
function was then obtained using
2 4
7%y = = .
v=2 (3.2)

given wB’ the stream function on the lateral boundaries.

Geopotentials were calculated from the nonlinear balance equation

2 2 2
V' = £V ~ 2m (wxy - wxxwyy) + elwy +ovgby (3.3)

where B, = E and vy, = 3f . Of course to solve (3.3), ¢, 1is required.
1 1 IxX B

3y
The observed boundary height values were used for g in (3.3).

Finally, temperatures were calculated from the derived geopotentials

through the hydrostatic equation. The nondivergent winds and balanced
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temperatures were vertically interpolated from the levels at which

they were calculated to the model sigma levels.
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4.0 SYNOPTIC CASE CHOSEN FOR STUDY

We will use data for two synoptic times. For each time, the
available data consist of vector winds on the synoptic rawinsonde
network. Shaginaw (1979) subjectively analyzed the data for each of
the six standard upper-level pressure surfaces and for sea level
pressure. He then manually digitized the data for several hundred
points at each level. The data were objectively analyzed with a
Cressman (1959) scan. The data were digitized at enough points so
that the Cressman scan reproduced well the sharp gradients and smaller
features.

Shaginaw (1979) provided a comprehensive discussion of the
synoptic situation for the period 17-21 November, 1975, and that
discussion will not be repeated here. However, we will briefly
summarize the meteorological conditions at the two synoptic times used
here. Those times are 12191175 and 00201175, where the hhddmmyy format
is broken down in hh = hour, dd = day, mm = month, and yy = year.

For example, 12191175 represents 12 GMT, 19 November 1975.

A high pressure area (ridge) persisted over the southeastern US
between the times 12191175 and 00201175. This ridge contributed to
a severe pollution episode at Pittsburgh, PA. The ridge also provided
a continuous supply of low-level moisture from the Gulf of Mexico to
the Great Plains and adjacent states. This moisture supply was a key
factor in the precipitation which occurred between 12191175 and 00201175.

The moisture initialization used was provided by Wolcott (1979). He
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developed a scheme incorporating satellite, surface, and rawinsonde
data into the relative humidity analysis. The initial relative
humidity fields for sigma levels 3% and 5% are given in Fig. 6. The
satellite picture used for input into the moisture analysis is given
in Fig. 7. It is important to note that the initial moisture field
is saturated over a large portion of the central Plains states and

the upper Midwest.

4.1 The synoptic situation at 12191175

The observed sea level pressure (SLP) is presented in Fig. 8a. A
ridge dominates the eastern United States. A trough extends from a
1008-mb low near Big Bend through Minnesota.

The closed low at 500 mb (Fig. 8b) is centered at the "four
corners' region. Although the ridge over the Southeast is weakening,
the height gradient to the south and southeast of the closed low is
increasing. Fig. 8c is the observed 500-mb wind velocity. There are
relative minima associated with the closed low and the ridge over
the Southeast, Of particuilar interest is the wind maximum entering
the domain over the California-Mexico border. This wind maximum
("jet streak") will proceed to move around the south end of the
trough and up the east side resulting in significant precipitation.

Fig. 8d is the observed 500-mb temperature field at 12191175.
Note that the cold tongue extending southward from Montana reflects

the trough position well.
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Because we will attempt a divergent initialization at 12191175,
we will now present for comparison, the results of the nondivergent
initialization for 12191175 that was performed as outlined in Section
3.3. Fig. 9a is the nondivergent wind speed and direction. The
differences between Figs. 9a and 8c in the vicinity of the trough
are as expected. That is, the wind maximum from southern California
through west Texas and up into the Plains states is not as strong in
the nondivergent case. Also, the horizontal shear over New England
is not as strong in the nondivergent case.

Fig. 9b is the balanced height field obtained from the non-
divergent winds of Fig. 9a. When compared with the observed heights
(Fig. 8b), the balanced heights are smoother, the trough is broader,
the height at the center of the closed low is 21 m higher, and the
height gradient southeast of the trough is slightly weaker.

The balanced temperatures are given in Fig. 9c. When compared
with the observed temperatures (Fig. 8d), we note the same kinds of
differences as in the height fields. For the balanced temperatures,
the trough is warmer, the horizontal temperature gradient north of
New England is weaker, and the ridge over the Southeast is slightly

warmer.

4.2 The synoptic situation at 00201175

. Relatively rapid changes occurred between 12191175 and 00201175.

A low developed over the Texas panhandle and moved as well as deepened
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rapidly to a 1004-mb low over eastern Kamsas at 00201175 (Fig. 10a).
The trough now extends from south Texas through the Kansas low and
then through Lake Huron and into New England. The cold air has now
penetrated into the northern Rocky Mountain states and the surface
pressure gradient from Wyoming to Kansas is much stronger than 12 hours
before.

From the observed height field in Fig. 10b, we see the closed
low has moved eastward to southwest Kansas at a speed of about
17 m s-l. The height of the low center fell about 40 m. The height
gradient to the southeast of the trough has strengthened. This is
reflected in the wind speeds and directions in Fig. 10c. The wind
maximum previously over southern California has increased nearly
12 m s-1 while moving around the southern end of the trough and is
now centered over Abilene, Texas. Precipitation occurred on the cold
side and ahead of this jet streak. Also note that the wind maximum
north of Maine has increased in intensity. The position of this
maximum was probably responsible for thc precipitation which occurred
in the western Great Lakes region.

The temperature field (Fig. 10d) shows an increased temperature
gradient to the south and southeast of the trough with the cold air
advancing over Kansas and Oklahoma while the relatively warm air still

resides over the Midwest.

T TS T 4. i d AL & e e

w Sianil o kst Tt 24




la R e - - — - “— v
| ) ) ] : “
,v — b
P R TR B - ———— s ap— . T WD e W - o . an |\ai\9i§
_.
N
(=5}
*GLTT0Z00 I® SPT®T3 paaidsqo 01 "81a
|
‘qu # ST TeAJXajut AnOojuod IYJ, ‘paijedIpur :
‘e 09 ST Teaxd@3ufl anojuod Iyl .muﬂwﬂws qu-00% ‘q 21e s3juoaj 2oejang aanssaad TaAaaT Beg ‘e ‘

L4

TLUY

ey

-

i




93

*(ponur3uoj) g1 ‘314

‘Do ST

{BAI31IUT Inojuod 3Yy] ‘saanjeiadwsl qu-gog P .ﬁlw W G S] [EAJI3IUT INOJUOD Y] °SPUIM qu-0Q0G °I

1313

!

i

L L L L L L]




o @RS N Ry s I A GRS e coun O SEAY O SEEN S BEER BN sae

94

4.3 The observed precipitation amounts

Precipitation data for the period 12191175 to 00201175 were
extracted from the National Climatic Center's November, 1975,
Hourly Precipitation Data (Volume 25, Number 11) booklets for each
state. For each hour, the data were analyzed at grid points using a
Cressman (1959) scan with a radius of influence of 1.0.

The total precipitation for the first three hours (12 GMT to
15 GMT, 19 November 1975) is given in Fig. 1la and t.~ total
precipitation for the 12-hour period is given in Fig. 1lb. We
observe that the heaviest 12-hour precipitation (just over 2.5 cm)

occurred from south central Nebraska to northwestern Kansas.
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5.0 USE OF THE OMEGA EQUATION IN THE DETERMINATION OF THE DIVERGENT

WIND COMPONENT

The first objective of this chapter is to review previous work
on the use of the omega equation to diagnose vertical velocities.
Then we will derive the finite-difference (FD) version of (2.23), the
mesoscale omega equation. The FD omega equation will then be applied
to the 12191175 data described in Chapter 4. Experiments will be
performed to confirm the validity of the relative order of magnitude
of the terms in (2.23). Finally, sensitivity experiments will be

conducted which will provide information on how accurately the

5.1 Previous diagnostic studies using the omega equation
The omega equation equivalent to that of Krishnamurti (1968a)
can be written:

2

} l divergent wind component can be determined.
]

2 2 3w 3 3
+ — ——— . —_— .
v (csw) f 5 f 3p Yw v + f %P YX Ve
ap
Tl T2 T3 T4
I,I,I II1,I1,I1I
(5.1)
R 2 R 2 d 3_ 3¢
+ = VYV VT + = V°V VT - f — D + £ —
| A T P -X ch ap " 3p
T5 T6 T7 T8

,I,I I1,I1,II1I II,I1,II I1,I1,III
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T9 T10 T1l1
II,II,III I,I,I IL,II,II
(5.1
A REE S LT RTE 1T S
T12 T1i3 Tl4
X, IV, X X,IL,X X,I1II,X

where HS is the sensible heat added per unit time from a water surface.

Note that terms Tl through Tll correspond exactly to those of (2.23)

except that Krishnamurti assumes f<<f in T2. Under each term in

(5.1), the first Roman numeral is the order of magnitude of that

term from the scale analysis of Chapter 2 (X indicates not given).

Krishnamurti found that T12 was small except over large water bodies

and hence T12 will not be discussed here. Terms T13 and Tl4 cor-

respond to terms T13 and Tl4, respectively, of (2.19), and were assumed

te cancel in (2.23) by virtue of the geostrophic vorticity assumption.
Krishnamurti (1968b) applied (5.1) on a 2.5-degree latitude

by 2.0-degree longitude grid for four synoptic times covering the

development of a cyclone in mid-latitudes. To examine the magnitude

of omega, he chose eight points in the vicinity of a 500-mb trough

at one of the four synoptic times. First, the omega values at the

eight points were computed and then averaged. From this average

value, the relative order of importance to the total omega of each

term is given as the second Roman numeral under each forcing function

in (5.1). We note that the relative importance of each term found
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by Krishnamurti is exactly that determined by the scale analysis

for synoptic scales (Krishnamurti's average grid increment was about
200 km). He also pointed out that T8 and T9 tend to cancel and, to
a lesser extent, so do T4 and T6. The largest vertical velocity
found at any point was at a point where the latent heating con-
tribution was the largest.

Baumhefner (1968) used Krishnamurti's (1968a) diagnostic model
in the tropics on a 2.0-degree latitude by 2.0-degree longitude grid.
He studied an easterly wave spanning four synoptic times in August,
1961. The third set of Roman numerals under the terms on the RHS
of (5.1) were Baumhefner's results at the 500-mb level. We see that
terms T4, T6, T8, T9, and T1l3 were found to be an order of magnitude
smaller than Krishnamurti's results.

Hawkins (1972) developed a diagnostic model for computing omega
which he applied to three disparate cases on a 206-km grid mesh.

He reported that the omega values obtained from the complete,
relatively sophisticated model were similar to the first-guess
values diagnosed with the quasi-geostrophic omega equation with the
latent-heating term added. That is, Hawkins' findings agreed with
the other researchers.

In summary, we conclude that previous research supported the
scale analysis used in Section 2.1 in the determination of the omega
equation appropriate on the synoptic scale. When the FD form of the
mesoscale omega equation is applied to the 12191175 data, we expect
the relative importance of the terms will be the same as that

indicated by the scale analysis for the mesoscale.
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5.2 Derivation of the finite-difference (FD) form of the omega

equation

Before we can present or discuss FD equations, we need to define

some FD operations.

for the FD operators

4

&

where j is the

- (ai’j+%

(g, 345 = O, 31/

(g T %y

+ ai,j_%)/Z

+

Y2

(ai#i’j ai-;i’j

east-west index and i is the north-south index.

We will use the "four-point" operators

[*]
i

=0,y

lm

20 )/4

1,5 7 %-1,3

?.oti )4

'3 * ai)j-l

Vertical differences and averages are defined by

-0
a

Sa

(g + % s)/2

(ak+% - ak_%)

We use Shuman and Hovermale's (1968) notation

(5.

(5.

(5.

(5.

(.

(.

(5.

(5.

2a)

2b)

2¢)

24d)

3a)

3b)
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Omega will be calculated on a 30 by 35 by 7 grid. Each 30 by
35 horizontal section has a grid increment of 120 km and is centered
at 41N and 95W. Fig. 12 illustrates the vertical structure of the
omega equation domain. Note that velocity, temperature, omega, and
static stability are defined at standard constant-pressure levels
while the forcing functions for the three-dimensional relaxation are
defined at the mid-levels.

Because the derivation of the FD form of the omega equation is

long and detailed, it is presented in Appendix 1.
5.3 Application of the FD omega equation to the 12191175 data

In this section we will use the FD omega equation to compute
omega values for the 12191175 data set. We will first examine the
diabatic term. Then we will try to determine to what accuracy the

vertical velocities can be determined.
5.3.1 The diabatic term and the parabolic omega profile

As described in Appendix 1, we use a parabolic omega profile
and the observed rain rate to calculate omega values due to the
diabatic term only. Hereafter, these omega values will be termed
convective omegas.

Since precipitation amounts were measured hourly at synoptic
stations, and since a rainfall rate valid at 12191175 was desired,
rainfall amounts from 2 hours before and 2 hours after 12191175 were
averaged to obtain a more representative rainfall rate. Fig. 13 presents

that precipitation rate in cm d_l.
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Level Pressure Input Derived
(mb) Data quantities
| 200 YT w G,
12 - as an o e o o F'
2 300 Vo Tp wp Gy
212 e mc——————- Fo
3 400 Vs T3 wy G,
312 R Fs
4 500 NoTe we %,
4172 - ——-————— Fo
5 700 Vo Ts wy G,
51/2 _———— e e e e A
6 850 Ve Ts we Oy
61/2 N A
7 1000 Yy Wy
Fig. 12. Vertical structure of grid used to calculate the omega

Fig, 13.

field. The forcing functions F are calculated at half
levels and omega is obtained at the standard pressure
levels.

)\
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“

Observed rainfall rate in cm d-l valid at 12191175.
This rate was derived from the observations for the
period 10191175 to 14191175. The contour interval
1s 1 em d~1,
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We should mention here that observed precipitation rates, the
input data for the omega equation diabatic term, can be obtained from
other than rainguage measurements. For the eastern US, rain rates
can be obtained from NWS manually digitized radar (MDR) data (Moore
et al., 1974). Over the oceans, meteorological satellites have
provided precipitation rate observations (Adler and Rodgers, 1977). A
scanning microwave radiometer on the satellite measures a "brightness"
temperature. The dominating factor in the determination of this
temperature over water is liquid water drops of rainfall size. The
brightness temperatures are then translated into rainfall rates using
previously derived rainfall rate-brightness temperature relationships.
In the future, satellites may also provide rainfall rates over land.
Therefore, satellites provide a means of obtaining data required for
the diabatic term.

We will use the rainfall rate in Fig. 13 in the solution of the
finite-difference form of the omega equation. Before solving the
entire equation, we will conduct four experiments to determine
convective omegas. The purpose of these experiments 1s to determine
the effect of uncertainty in the observed rainfall rate and the effect
of including a terrain-induced omega as the lower boundary condition
for the parabolic omega profile.

Table 5 gives a summary of the convective omega experiments. The
column labeled "RAMT'" is the fraction of the rainfall amount of Fig. 13
that was used for that particular experiment. Fig. 14 is the 500-mb
convective omega field for Experiment 5.1. The purpose of Experiments
5.1 through 5.3 was to determine if there exists a significant

variability in the omega values calculated for the computational domain

[
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at 500 mb when the precipitation rate was altered. Since precipitation
amounts over large areas are determined by very few observations in |
time and space, the precipitation amounts themselves at grid points
possess a sizable uncertainty. This uncertainty is largest in

areas of strong convective activity. A 25 percent difference between
the "observed" precipitation amount and the precipitation amount

that would be representative of a grid square can easily be imagined.
For a 25 percent error in precipitation rate (represented by

Experiment 5.3), there was approximately a 20 percent error in the
500-mb RMS omega value over the entire domain. Therefore, the signi-
ficance of the diabatic term was critically dependent on the accuracy
of the rainfall amounts themselves. Experiment 5.4 demonstrated that
when terrain-induced omega values were not used as the lower boundary
condition, there was only a small effect at 500 mb but there was a
significant effect at 850 mb. We conclude that the terrain effect

did indeed produce significantly different omegas in the lower levels.
Terrain-induced omegas should be used since they are consistent with

the forecast model which contains variable terrain.

5.3.2 Experiments with various terms in the FD omega equation

R

Experiment 5.5 consisted of obtaining‘omega values using the
finite-difference version of (2.23), the mesoscale omega equation.
The resultant 500-mb omega values are presented in Fig. 15. From
the figure we can see the strong influence of the diabatic term over
eastern Colorado, the Texas panhandle to southwestern Nebraska, and

over Lake Superior and vicinity.
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Several experiments were performed to support the scale analysis

used in obtaining (2.23). For example, experiments were completed

with the quasi-geostrophic omega equation, with differential vorticity

advection only, and with the Laplacian of temperature advection only.

From these experiments the following conclusions were reached:

€8]

(2)

(3)

(4)

(5)

The omega equation experiment without a diabatic term
greatly underestimated the omega values in the precipitation
areas. In fact, the diabatic term waé the largest single
term in the areas of precipitation. Therefore, a

diabatic term must be included on the mesoscale.

The quasi-geostrophic omega equation with a diabatic

term overestimated the omega values in the precipitation
areas.

An experiment with random uncertainty in the wind field
produced only small RMS changes in the omega values.

The scale analysis in Section 2.1.4 was supported. That
is, the various forcing functions had the expected relative
influence on the omega values. Therefore, (2.23) is an

appropriate form of the omega equation for the mesoscale.

RPN

An experiment was conducted in which the precipitation
rate used for the diabatic term was 25 percent less than

that for Experiment 5.5. At 500 mb, the RMS difference

LT Aatak MM S 2 TS

between this experiment and Experiment 5.5 was 15 percent
of the mean absolute value of omega for the entire field.
At 600 mb, this produced a 10 and 15 percent RMS

difference in ux and VX’ respectively. That is, with a .

reasonable estimate of the uncertainty inherent in
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precipitation observations, the percentage change in the

divergent wind components was almost as large.

The omega values used to determine the divergent wind component
were those from Experiment 5.5. Then, to obtain velocity potential,
the method described in Section 2.3.4 was applied with the boundary
normal derivative adjusted for 100 iterations. The resultant
dive.gent wind fields for the 925-, 775-, 350-, and 250-mb levels
are given in Fig. 16. 1In Fig. l6a, there is a narrow zone of con-
vergence from central Wisconsin to southwestern Kansas and on toward
the south. This same pattern is evident at the 775~mb level (Fig.
16b). The low-level convergence is supported by the divergence aloft
depicted in Figs. l6¢ and 16d. The zone of divergence extends from
Lake Superior to western Kansas and to the south. The divergent
wind fields appear to be vertically consistent. In Chapter 7, we
will see if the region of maximum vertical motion is reflected in the
forecast started from a divergent initializatiom.

In the next chapter, the FD form of the balance equation which

will be used in the divergent initialization will be derived.
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6.0 DERIVATION OF THE FINITE-DIFFERENCE (FD) BALANCE EQUATION

The purpose of this chapter is to derive the FD form of the
balance equation to be used for the divergent initialization of the
PSU model. The balance equation in sigma coordinates appropriate
for this purpose is given by (2.31).

At this point we will examine how balance equations in general
have been used in the initialization of numerical models. Th; common
practice, especially on the large scale, has been to use observed
geopotentials and solve the balance equation for stream function.
For example, this procedure was used by Sundquvist (1975). There
are, however, at least two reasons why an alternative approach should
be employed.

First, Paegle and Paegle (1976) reported that, for the year
beginning 1 June 1969, virtually every Northern Hemisphere 200-mb'
chart exhibited nonelliptic geopotential data at some points. The
nonelliptic geopotentials were especially prevalent in the summer
above severe weather events. The balance equation was not solvable
in regions where the geopotentials are nonelliptic and some approxi-
mation must be made there.

Second, WAM, Fankhauser (1974), and AW have pointed out that
typical errors in surface pressure and rawinsonde temperatures led
to large errors in the horizontal gradients of geopotential heights
on the mesoscale (10-100 km). Fankhauser reported that errors in
height observations of more than 30 m were common on the mesoscale.

Therefore, we will follow WAM and supply the nondivergent wind to the
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balance equation and solve for geopotential. We now proceed to the
derivation of the FD balance equation.

One possible approach for the FD form of the balance equation
would be to write each term of (2.31) directly in its FD form.
Although that approach is conceptually simple and relatively easy
to do, it will not be used here. One objective of any balancing
scheme should be to retain the maximum degree of consistency with
the model being initialized. This should help minimize noise generated
during the adjustment phase of the prediction. That 1is, the more
consistency between the initialization scheme and the model, the
nearer the balanced initial conditioms are to those conditions
exactly compatible with the model. Therefore, we will derive the FD
form of the balance equation directly from the model FD equations
themselves. In this chapter, we will present the PSU model FD
equations, derive the consistent FD balance equation, and outline how

the equation should be used in the initialization procedure.

6.1 The PSU model FD equations

AW provide the complete set of the FD model equations, and
most will not be repeated here. We present only those which are
essential to this chapter.

The finite-difference equations associated with the u and v
component equations of motion (minus those terms which do not

correspond to a term in (2.28)) are:
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X 7
2 — Pl — PV (5 pu)
0=-m[(u—-)+(u—'-)y]- 5o
Tl T2 T3
(6.1)
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(6.2)

nRT p.*
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T10 T1ll T12

where the terms p,u and p,v represent up*") and vp, y’ respectively.

The FD form of the continuity equation is

pra 4
3P, —xy. 2, P + (p_*v 80 6
at = (m ) [( m )x m )y] - p* 6_0. . ( '3)

* —_— —
w = po + (_t_+—nyp* +‘—,'xyp* ) I (6.4)
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Finally, the hydrostatic equation is

3¢ —q
3ln(o + Pt/P*) RT

. (6.5)

6.2 Derivation of the FD balance equation for the PSU model

We know that a divergence equation can be formed from the u and
v equations uof motion by operating on the u equation with %; and on
the v equation with %; and summing the result. To form the FD
balance equation, the procedure must be slightly modified. In the
p,u and p,v component equations, each individual term is defined
at a dot point because p,u and p,v are defined at dot points. However,
we will use the balance equation to solve for geopotential and on the
staggered grid, geopotential is defined at cross points. Therefore,
in deriving the balance equation, we must make a modification such
that the terms are defined at cross points rather than dot points.

The result of differentiation of Tl in (6.1) with respect to x
is Tlx in FD notation. However, the resultant derivative applies
midway between dot points. In order for the derivative to apply at
the desired cross point, Tl must first be averaged in the y direction
(FD operation Tiy). For Tl at point (i,j), the result of (fIy)x applies
at cross point (i+),j#3) as desired, where integer values of 1 and j
refer to dot points. To summarize, the desired balance equation is
derived by first dividing (6.1) and (6.2) by mp,. Eqs. (5.2d) and
then (5.2a) are applied to (6.1) and that result is added to the

result of applying (5.2c) and then (5.2b) to (6.2). Transposing the
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terms containing geopotential to the LHS of the equation yields

equation (6.6), the complete FD balance equation.

X
GTy + G, = e @
x ‘x y y —Xy m ‘x|x
Px
Tl T2 T3
J X
7 =
PaV Pyu
i, @ L e, )
—Xy m yix —Xy m Xy
P* P*
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—--._..yA b4
X §( °
n — Pa¥ 1 o pyu)
* ::xy v m ) + —Xy 8o b 4
P vy wp,
T6 T7
" XY —Y f
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1 §(o pyv) p’kx ]
—Xy 8o y o x
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T8 T9
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For a nondivergent initialization on sigma surfaces, the u and v
appearing in terms T3 through T6 represent the nondivergent wind

components u, and VW’ respectively. For a divergent initialization

v
on sigma surfaces, terms T3 through T6 are each applied three Y
because the u and v in those terms represent the total wind com, “~ernts.

That 1is,

u=u +u (6.7a)

and

e o m . ——y

v=v +v . (6.7b)

For example, if we use functional notation to express T3 as a function

of u and p,u, then we can write T3 as

T3 = f(u,p,u) . (6.8)
Substitution of (6.7a) into (6.8) produces

T3 = £(u ,pau ) + £(u ,puu ) + f(ux,p*uw)

(6.9)

+ f(ux,p*ux) .

R AT I D e A A e e caan DN N BN DY BB e
<
>

The fourth term in (6.9) is neglected because the scale analysis of
Chapter 2 indicates that it is two orders of magnitude smaller than

the first term. The three applications of T3 required by divergent
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initialization on sigma surfaces are represented by the first three

terms of (6.9). We write these terms as

T31 f(u¢,P*uw)

T32 f(uw,p*ux)
T33 = f(ux,p*uw)
Similarly, for terms T4 through T6, we can write

T41 = f(uw,p*vw)

T42 = f(uw,p*vx)

T62 = £ s
6 v, Pyv,)
T63 = f(vx,p*vw)

It is important to realize that the '"nondivergent" or "divergent"

velocity components refer to pressure surfaces even though the model

is formulated on sigma surfaces. We calculate the velocity components

on pressure surfaces and interpolate them to sigma surfaces. We do

e
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not compute x or ¥ on sigma surfaces. Thus in the "ncndivergent"
initialization, VP-Y = 0 but VO-Y does not equal zero because of the
slope of sigma surfaces over variable terrain.

Performing the above FD operations on the terms of (6.6) is a

long, complex, and tedious enterprise and is therefore presented in

Appendix 2.
6.3 Application of the FD balance equation

To apply (6.6), we need o at o levels and cross points, T at

half-sigma levels and cross points, and u¢, ux, vy vX, m, and f at 4

e

half-sigma levels and dot points.

The available data consist of surface observations and observations
on constant-pressure surfaces. Therefore, the data will be inter-
polated to sigma surfaces before applying (6.6). This will provide
T at half-sigma levels. We obtain ux and vx at half-sigma levels by
interpolating the divergent components computed in Chapter 5 from
constant pressure to sigma levels. We will use the observed u and v

at pressure levels in

v w - = (6.10)

to obtain y at the mandatory pressure levels. The resultant non-
divergent wind components are then interpolated to the half level

sigma surfaces,
ap*

To determine 5, we first calculate 3t from a finite-difference

—— e -

form of the vertical integral of mass divergence. Then, for each

layer, we apply
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3P, o] -a
. - - —Xy —X , Xy —% k+1 k
%1 T %k T GE T Ve e T Vias Pr ) Py

to obtain o at the full intermediate sigma levels. By definition,
o is zero at the top and bottom sigma levels. We have now defined
all of the quantities necessary to use (6.6).

Once geopotentials have been obtained at all the half-sigma
levels, (6.5) is used to obtain the balanced temperatures. The
geopotential at the ground is known from the terrain elevation.
The balanced temperatures are then interpolated to the half-sigma

levels and the initialization process is completed.

(6.11)
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7.0 DIVERGENT INITIALIZATION APPLIED TO A REAL DATA CASE

The purpose of this chapter is to discuss in detail, five 12-hour
forecasts, all of which began at 12191175. Forecast 1 is initialized
with unbalanced data. The observed winds and temperatures are
interpolated from pressure to sigma surfaces and are inserted into
the model with no other processing. Forecast 2 is initialized with
unbalanced data but differs from Forecast 1 in that the winds are

nondivergent. The nondivergent winds and observed temperatures are

interpclated from pressure to sigma surfaces. Forecast 3 is initialized

by the nondivergent balance method described in Chapter 3. That is,
geopotentials are calculated on pressure surfaces via the balance
equation, temperatures are derivéd\hydrostatically, and these
temperétures are interpolated to sigma ;urfaces. Forecast 4 follows
a nondivergent initialization on sigma surfaces. Geopotentials are
calculated on sigma surfaces using only the nondivergent wind.
Balanced temperatures are derived and interpolated to sigma surfaces.
Forecast 5 follows a divergent initialization on sigma surfaces. It
is similar to Forecast 4 except that the terms in the balance
equation containing the divergent wind components are also used and
the divergent wind component obtained in Chapter 5 is added to the
nondivergent wind to obtain the total wind field. Forecasts 1 and 2
are considered control experiments because they are unbalanced.
Forecasts 3, 4, and 5 are balanced in different ways. Figs. 17
through 20 are flow charts illustrating how the various initializations

proceed, Fig. 17 shows how the nondivergent wind components are
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Fig. 17. Flow chart depicting the calculation of stream
function on pressure surfaces and the
nondivergent wind components on sigma surfaces.
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Fig. 18. Flow chart diagramming the calculation of omega
on pressure surfaces and the divergent wind
components on sigma surfaces.
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calculated on sigma surfaces. Fig. 18 illustrates how the divergent
wind components are obtained on sigma surfaces. In Fig. 19, we show
how ¢ is calculated. Finally, in Fig. 20, we graphically compare

the different initialization procedures. Although we are interested
in all aspects of the results of the experiments, we will be primarily

concerned with the initial precipitation amounts.
7.1 Initial conditions

In the three forecast experiments thaf were balanced (Forecasts 3,
4, and 5), a superadiabatic lapse rate occurred over much of the
surface low pressure system (the eastern Rockies and the Plains
states). In each initialization, geopotential is defined at the
surface (sigma level 7). 1In Forecast 3, geopotential is calculated
at 850 mb while in Forecasts 4 and 5, geopotential is calculated at
sigma level 6%. Temperatures are then computed for the bottom layer
from the hydrostatic equation. In each case, the lowest layer is
about 500 m thick. One explanation for the superadiabatic lapse
rates is the procedure used for the diagnosis of surface pressure.
The initialization procedure uses temperature to diagnose surface
pressure from sea level pressure in an iterative process using the
hydrostatic equation. The sea level pressure observation was
originally obtained from observed station pressure using the standard
atmospheric lapse rate. Consequently, if the actual lapse rate is

warmer (or colder) than the standard atmospheric lapse rate, the

he - M T e - —_

e s

T

. Wpare Saiee w s




—-

Tobe, _ Tobsy Tmesot
vertical
interpolation v Y

a. Forecast 1.

verticol
[ 4
b. Forecast 2.
XLy (Fig. M) Lmedel
[ 4
. nonlinear hydrostatic verticol
Wp (Fig-17) bolonce ¢9 equation P inferpolation To ™ T medet
equation (3.9)
3.4)

c. Forecast 3.

Yy (Fom —=  Ymodel
o

!"’V (Fem mesoscale hydrostotic

verticol sigma-surfoce oquation
Tobsp/interpolation. '%08g ~ balance ﬁ‘#o' 635 ~ 1o Tmodel
. equation
o (Fig. 19 (6.8)

d. Forecast 4.

F
7 ~model
L"(Fb L)
Vy, (Fig. IT)
w" ® sigma- hydrostatie

] #
v‘Pg(FW' 18) 9 4’ aguotion . ’
G (Fig.19) . c ®S ¢ 7 modet
A /
%b%pinterp. O0¢

e. Forecast 5.

.

Fig. 20. Flow chart illustrating the differences in
the initializations for the five forecast
experiments.
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diagnosed surface pressure will be higher (or lower) than the observed

surface pressure. 1In this case, the surface pressure was under-~
estimated in the vicinity of the low since the atmosphere was colder
than the standard atmospheric lapse rate would predict for the 850 mb
to surface layer.

Now we can examine typical errors in the temperature at the
bottom level that could result if P, or the geopotential at the lowest
calculation level are in error. The finite~-difference hydrostatic

equation for P, = 0 can be written:

= - RT (7.1)

where T applies at the logarithmic mean pressure of Py and p6%, and
the subscripts 6) and 7 refer to sigma levels 6% and 7, respectively.

For p, = 1000 mb, a 10 m change in the geopotential at level 6%

7
results in a two-degree change in the mean temperature of the layer.
A 3-mb error in P, (ps) results in a one-degree change in the mean
temperature. Keyser (1978) reported that for a 925-mb height error
of 10 m, the corresponding error in temperature for the 925-mb to
surface layer is 3.8°C for SLP = 1013 mb and 4.4°C for SLP = 1000 mb.
Keyser (personal communication) reported the occurrence of super-
adiabatic lapse rates (and not just in the lowest layer) in cases
reported by Keyser (1978) and Anthes (1978). Barker® (personal
communication) reported that areas with a superadiabatic lapse rate
in the lowest layer occurred after balancing the initial conditions

*
E. H. Barker, 1978, Naval Environmental Prediction Research Facility,
Monterey, California.
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for a global synoptic-scale primitive equation model. Hence, for thin
layers especially, the hydrostatic equation is very sensitive to small
errors in geopotential or surface pressure.

The atmosphere would not be expected to have a superadiabatic
lapse rate over any large area. Hence the forecast model should not
be provided with these erroneous lapse rates. Keyser and Barker
(personal communication) recommended using a convective adjustment
procedure at the end of the initialization. Although the balancing
would be somewhat altered, the result is more realistic., Also, the
presence of superadiabatic layers would artificially increase the
initial precipitation rate. The convective adjustment procedure
selected for use here is analogous to the one described by AW. Their
scheme conserved the vertical integral of internal and potential
energy.

The initial mean values of wind and temperature are given in
Table 6. The temperatures for Forecasts 3, 4, and 5 apply after the
convective adjustment was performed. The temperature changes produced
by the convective adjustment procedure were several degrees at levels
5% and 6% and one degree at levels 1) and 2%.

Barker (personal communication) found that the number of
occurrences of superadiabatic lapse rates dropped dramatically when
a new three-dimensional analysis procedure was applied to the raw
data before balancing. The three-dimensional analysis scheme replaced

a more conventional two-dimensional system. The analysis used on

g mES  vweey  emuw e SEE GE @ umm cvew N GER SED SED sam emee

the 12191175 data was a two-dimensional analysis. This suggests that
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Table 6. Mean values of the initial temperature and

wind fields for Forecasts 1 through 5.

Forecast
Number

Temperature (K)
Sigma level

s

2

3%
b
5%
6%

u component (m s
Sigma level

v component (m s

Sigma level
15
2
3
b
5%
6%

234,
254.
262.
268.
274.
279.

_.1)

23.

1
1
9
7
1
7

1

15.8

12.
.82
.65

)

2

.20
7.
.17
.58
8.
8.

20

20
66

234.1
254.1
262.9
268.7
274.1
279.7

23.1
15.9

7.67

8.21
7.18
7.17
7.59
8.19
8.65

235.
252.
261.
268.
274,
280.

23.
15.
12.

N W W O

O =

.84

7.67

WD W NN N

.12

.21
.18
.17
.59
.19

235.0
255.1
263.4
268.1
274.3
?77.5

23.1

15.9

12.2
9.84
7.67
4,12

8.21
7.18
7.17
7.59
8.19
8.65

125

235.0
255.0
263.3
268.0
274.3
277.7

23.1

15.7

12.1
9.75
7.54
4.10

8.44
7.27
7.18
7.58
8.19
8.72
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an analysis procedure with some vertical consistency constraint should
be used in the initialization of the PSU model to help eliminate
geopotential errors.

The same surface pressure field was used in all five experiments.
Because the temperature field at the lowest level is different for the
unbalanced experiments and each balanced experiment, the initial sea
level pressure fields are slightly different. Fig. 2la is the sea
level pressure field for Forecast 5. Fig. 21b is the balanced 500~mb
temperature field and Fig. 2lc is the 500-mb height field for
Forecast 5. The lowest height in the trough over the Rocky Mountains
is 15 m less than in Forecast 3. Fig. 21d is the initial 500-mb wind
field for Forecast 5. The nondivergent wind fields for Forecasts 2,
3, and 4 are identical.

One method of comparison of the initializations involves the
computation of RMS temperature difference between them. The RMS
temperature differences between the initial conditions of the
experiments are presented in Table 7. The values are not unusual
except for the level 6% differences between the balanced experiments
and the unbalanced experiments. An examination of the temperature
difference field between Forecasts 1 and 5 reveals temperature
differences of up to 10°C in the ridge over the southeastern United
States at level 6)s. In Forecasts 4 and 5, geopotentials were
calculated on sigma surfaces and the height of the level 6)% sigma
surface is as much as 35 m lower than the same sigma surface for
Forecasts 1 and 3. This height difference is due to the mesoscale

sigma-surface balance equation used for Forecasts 4 and 5. The 35-m
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height difference changes the depth of the layer between sigma levels
6% and 7 from about 470 m to about 440 m. This represents a 6 percent
change in thickness and corresponds to a 6 percent reduction in the
mean temperature of the lowest layer of about 20°C. This mean
temperature applies at about sigma level 6 3/4. When the mean
temperature is used to obtain the temperature at sigma level 6%, the
resultant level 6} temperature is up to 10°C lower than the unbalanced
forecasts. We will see that this erroneous temperature difference
adversely affects the RMS temperature errors at the lower levels.

The geopotential errors in the vicinity of the high are an additional
indication that an analysis procedure with some vertical constraint
should be used in the initialization of the PSU model. That is,

for a thin layer, a relatively small change in geopotential can make

a relatively large change in the mean temperature of the layer.

7.2 The model forecasts

In this section the forecast results will be compared and
contrasted with the exception of the precipitation predictions, which
will be discussed in Section 7.3. For each forecast, noise
characteristics and the 12-hour forecasts of sea level pressure,

temperature, and wind will be discussed.
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7.2.1 Gravity-inertia wave characteristics of the forecasts

Gravity-inertia waves in a forecast are sometimes referred to
as '"noise". As pointed out in Chapter 1, these waves can destroy
the meteorological portion of a forecast if care is not exercised
during the initialization and the forecast itself. However, gravity
waves, particularly internal gravity waves, are responsible for the
geostrophic adjustment process. Noise is perhaps an unfortunate
choice of words as it implies that all gravity waves or vertical
motions are undesirable. The undesirable vertical motions arise

principally from the time-dependent boundary conditions and aliasing

and are generally of smaller scale than the meteorologically significant

vertical motions. Thé undesirable vertical motions are minimized with
the enhanced horizontal diffusion scheme.
Most investigators have previously used a time series of the

vertically integrated mass divergence as an indicator of noise. That

ap* 52p* ap*
is, |=—| or |—==| have been used. Sundqvist (1975) plotted |—
3t 5e2 : ot

summed over the domain versus time. His curves showed an increase for

the first two hours after initialization and then displayed a gradual

decline. 5
3 Py

| .
8t2 3D
waves appeared most clearly in the 3t term of the divergence
o%p,
| should be used to indicate external
3t” 3%, Pe 3D
gravity-wave noise, Since f 2*|_£§_related to J 3t dp by the
ot 2
continuity equation, Bleck used |a P

Bleck (1977) preferred to use | He stated that gravity

equation and, therefore, |

* s
| as a measure of general

Px

t
noisiness. Bleck's plots of | l showed a sharp decline in general

at
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noisiness for the first three hours followed by a gradual decline. His

initial conditions were unbalanced so we should expect a high initial

32p

noise level. Bleck's model with terrain produced a value for | *| of
- - at

about 5 x 10 7 mb s 2 at the end of a 12-hour forecast on an 85~km mesh.

Py 32p,

WAM reported IEE—| and |——5—| for the PSU model applied to another
data set. A time smoother has since been incorporated into the PSU
model and the noise characteristics should now be somewhat different
than those in WAM. Anthes (1978) used a version of the model employed

here, on a 60-km grid mesh and another data set. He reported mean
ap
<2 *

va%ues of about 5 x 1(‘1-4 mb s-1 and 5 x 10-7 mb s for lsE—I and
3°p

l *l, respectively, at the end of the first 12 h of a 24-~hour
5t

forecast. —_—

3p, ZP*

Figs. 22 and 23 are the plots of |3E—] and l;;f.l’ respectively,
versus time for Forecasts 1 through 5. 1In Fig. 22, the curves increase
slightly for about an hour and then decrease slowly through the rest
of the forecast period. Forecasts 1 and 2 have similar ];;il plots
and are not significantly different in this respect. Likewise,
Forecasts 3, 4, and 5 have similar graphs. The forecasts started
from balanced initial conditions (Forecasts 3, 4, and 5) do indicate
a lower noise level as measured by l;%f‘ than the unbalanced
experiments, 1 and 2. In Fig. 23, the plots decrease rapidly for
three hours and then decrease more slowly for the rest of the forecast.
The forecasts with unbalanced initial conditions again possess a higher
noise level than the balanced experiments. Forecast 1 has a

significantly higher noise level. As in Fig. 22, Forecasts 3, 4, and

5 are not substantially different. For Forecast 5, this implies that
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the added divergence does not generate significant additional noise

in the forecast. That is, very little of the divergence is partitioned
into gravity-inertia wave noise. 1In both Figs. 22 and 23, we detect

no difference in noise level for the balanced experiments.

The results in Figs. 22 and 23 are similar to those of Bleck
32
(1977) and Anthes (1978). Bleck's value of l__gi| for unbalanced

ot
initial conditions at 12 h was the same as that_in Fig. 23 for Forecast
32p
*‘ at the

1. Anthes reported slightly higher values of I;E:I and |
end of 12 h than for the balanced experiments in Figs. ZZa;nd 23,
respectively. This was probably due to his use of a 60-km grid mesh,
compared to the 120-km mesh used here. In another forecast experiment
not reported on here, the parameter which controls the strength of

the enhanced horizontal diffusion was increased by a factor of five.
Although the precipitation amounts on the domain interior were not
affected, the noise level as measured by |§§:1 was reduced by about a
factor of three. Hence the temporal variation of surface pressure
depends to some degree on the horizontal diffusion employed near the
boundaries. This fact alone could account for the slight differences
between the noise statistics reported by Bleck and Anthes and those
reported here.

Sundqvist (1975) reported a significant reduction of noise level
when the mass and momentum variables were balanced on sigma surfaces
for a synoptic-scale model. He also reported a higher noise level
for sigma-surface balancing when mountains were used as the lower

boundary. The terrain field used by Sundqvist was smoothed such that

44x and shorter wavelengths were removed. No smoothing was applied

S
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to the terrain field used in these experiments. Figs. 22 and 23 show
no noise level reduction for balancing on sigma surfaces. Perhaps

the mesoscale grid mesh, limited domain, and terrain field employed

did not permit a significant noise reduction for Forecast 4, as
compared to Forecast 3.
@kland (1970) studied a relatively simple two-level baroclinic

L)e
model. He plotted RMS —— versus time for nondivergent and divergent

ot
initial conditions (divergent initial conditions consisted simply of
the model pred. ‘tion after 12 hours of integration; that is, the

forecast was started 12 hours previously from different data).

ap

*

Pkland's RMS 37 curve was noisier for nondivergent initial conditions.
3P,

As he pointed out, 3¢ vas primarily a measure of external gravity wave

activity. Therefore, the forecast started from nondivergent initial
. conditions had more external gravity wave activity. @kland also
plotted RMS omega values for a level near 500 mb. He pointed out
' that, because internal gravity modes have higher vertical velocities
associated with them than external modes, the RMS omega curve will
reflect primarily the internal gravity waves. The RMS omega curve
given by @kland for the divergent initial conditions was relatively
constant indicating that the internal modes weve fully developed and
that the model variables were approximately in balance. In @kland's
nondivergent case, the RMS omega curve began at zero, reached the
L divergent initial condition omega cnrve in 3 to 4 hours, continued to
[ rise to a maximum in 6 to 7 hours, and then decreased to a minimum

at 11 to 13 hours.
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Here precipitation rates are the primary interest. External
gravity waves usually have a relatively small effect on precipitation.
Precipitation arises mostly from the slower internal gravity modes.
Therefore, the 500-mb RMS omega graphs versus time will be presented
for Forecasts 3, 4, and 5. Although the previous measures of gravity-
wave intensity (Figs. 22 and 23) were very similar for the three
forecasts, the precipitation amounts, as shall be shown later, are
significantly different. The RMS omega graphs will be related to the
forecast precipitation.

Fig. 24 contains the 500-mb RMS omega plots for Forecasts 3, 4,
and 5 (the plots for 1 and 2 are very similar to 3 and 4). The curve
for 5 begins at a higher RMS omega value and, after 5 hours, reaches
a maximum value lower than that of the nondivergent experiments. A
strong similarity exists between Fig. 24 and @kland's graph of the
RMS omega. Forecasts 2, 3, and 4 begin with no divergence, As the
geostrophic adjustment process proceeds and those experiments begin
to develop a divergent component, they actually "overshoot" the
quasi-equilibrium value and develop a larger divergent component than
Forecast 5 from 4 to 6 hours into the forecast. The 500~-mb RMS
omega curve for Forecast 5 indicates the rate of precipitation will
rise slowly during the first hours of the forecast and then remain
relatively constant.

Forecasts 1 and 2 possess higher noise levels than Forecasts 3,

sz*i

3t
The noise characteristic: of Forecasts 3, 4, and 5 as measured by

4, and 5. Forecast 1 is particularly noisy as measured by l
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Bp*

*
graphs of l§€—| and | | are not significantly different. That is,

Btz

no noise reduction resulted by balancing on sigma surfaces. However,
the 500-mb RMS omega curves are significantly different between

Forecast 5 and the nondivergent forecast experiments.

7.2.2 The forecasts of sea level pressure, temperature, and wind

Table 8 contains the RMS errors in the forecasts for sea level
pressure and for temperature and the wind components at 400, 500, and
700 mb. No significant difference in the forecasts can be detected
from these statistics although it is interesting to note that the
unbalanced forecasts (Forecasts 1 and 2) had the lowest RMS temperature
errors. Table 8 also contains the S1 scores for sea level pressure
for each forecast. The S1 score was developed by Teweles and Wobus
(1954). It is an objective measure of the forecast skill of the sea
level pressure forecast that is simple to compute and has been
reported often for other models. The Sl score for sea level pressure
relates horizontal differences in the forecast sea level pressure to

the observed differences. The S1 score is computed from

12
1=Z=1 lap, - AP0|
S1 = 100 5 (7.2)
e
1= 1

where APf and APo are the differences in forecast and observed sea

level pressure, respectively, and Gi is the maximum of APf and APO
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for a given pair of points. The differences in sea level pressure
were calculated for all adjacent points in the set of nine points
listed in Table 9, which gives a total of 12 combinations of points.
The "observed" sea level pressure differences were calculated from
the analysis of sea level pressure given in Fig. 10a. An Sl score
of 20 is considered perfect for practical purposes while a score of
70 is nearly worthless.

With a slightly different version of the model used here, Anthes
(1978) reported an average S1 score at 12 hours of 33.8 for 32 cases
over the US and Europe. The FNWC hemispheric model achieved an Sl
score at 12 hours of 37.2. These scores demonstrated considerable
skill at 12 hours.

The S1 scores reported here compare well with those of Anthes
and those at FNWC. It is interesting to note that the best Sl scores
here are for the forecasts from unbalanced initial conditions
(Forecasts 1 and 2). The S1 score of 30.2 for the forecast from
observed initial conditions was significantly better than the other
experiments. One conclusion from Table 8 is that divergent
initialization did not improve the S1 score for sea level pressure
or the RMS errors in the temperature and wind fields.

@kland (1970) obtained an analytic solution for a simple
baroclinic model. From this solution, he concluded that the final
adjusted state is independent of the initial divergence. Therefore,
the RMS errors for the experiments in Table { should not be expected
to be much different. Divergent initialization will, however,

influence the initial precipitation rate.
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Point

1

2
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Indices of the points used in computing S1 scores.
i denotes south-north direction; j denotes west-east

direction. Point (1,1) is the lower left corner.

¢ is north latitude; A is west longitude.

=

15

15

15

25

25

25

Rt~ i w e, SR

10
20
30
10
20
30
10
20

30

je

29.4

28.1
40.3
40.8
39.0
51.5
52.1

50.2

I>

104.2
91.8
79.7

106.0
91.3
76.7

108.8
90.6

72.5

g




[ ——

143

The sea level pressure forecasts for the experiments are similar.
Fig. 25a is the sea level pressure forecast for Forecast 5. The main
difference between Fig. 25a and the nondivergent experiments is that
the low in the nondivergent forecasts is 1009 mb. The observed
central pressure of the low was 1004 mb (Fig. 10a).

The 500-mb temperature fields for the forecasts are again similar.
Fig. 25d is the 500-mb temperature field for Forecast 5. None of
the forecasts extended the cold air over the Rocky Mountains far
enough to the south (compare with Fig. 10d). The intensity of the
trough is underforecast.

Fig. 25b is the 500-mb height forecast for Forecast 5. The
contour pattern is similar to the other forecasts. The lowest height
over Colorado for Forecast 5 was 12 m lower than in Forecast 3. The
observed height was 5472 m over the Colorado-Kansas border (see
Fig. 10b).

Fig. 25¢ is the 500-mb wind forecast for Forecast 5. The
forecasts are similar. The forecast agrees reasonably well with the
observed wind field (Fig. 10c) with the exception of the wind maximum
near E1 Paso. The forecast only slightly increased the core speed
of the jet and moved the core northward a small distance. However,
the core speed of the jet streak actually increased by 15.4 m s_1
and the core moved to a point near Dallas. As with the temperature
and height fields, the wind forecast reflects the fact that the model
did not forecast the rapid intensification of the trough or enough

deepening of the surface low.
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7.3 The precipitation forecasts

In this section the precipitation forecasts will be compared.
The precipitation forecasts will be viewed in several ways. First the
forecasts will be "scored". Then the precipitation amounts themselves

will be examined.
7.3.1 Scoring the precipitation forecasts

Anthes (unpublished) developed an objective procedure for the
"scoring'" of precipitation fields. If the forecast precipitation field
is one grid increment displaced from the observed precipitation field,
then the forecast still contains useful information. The objective
procedure that will be used, scores a precipitation forecast in a
quantitative way fo determine if a shift in the forecast field with
respect to the observed field improves the forecast when compared with
the observations. The complete objective procedure is presented in
Appendix 3. Therefore, it is discussed only briefly here. A
correlation coefficient is calculated for each shift in position of the
forecast field with respect to the observed field. An example matrix

of correlation coefficients ¢ for a shift in each direction of two

2,k
grid increments is given in Appendix 3. For example, 9.0 is the
]
correlation coefficient for no shift and c is the correlation

1,0

coefficient for a shift one grid increment to the right. Good forecasts
would have a large maximum Sk (1.0 is perfect) and low values for &
’

and k for the maximum correlation coefficient (0 and 0 are perfect).
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Figs. 26a, 26b, and 26c contain the correlation coefficient
matrices for the first three hours of the forecast for Forecasts 3,
4, and 5, respectively (Forecasts 1 and 2 are similar to Forecast 3).
Note that for the nondivergent forecasts (3 and 4), the highest
correlation coefficient is displaced one grid increment from the
center. For Forecast 5, the highest correlation coefficient occurs
with no spatial offset. Also the maximum correlation coefficient
for Forecast 5 (CO,O = 0.75) is higher than the nondivergent forecasts

(co 1= 0.55 for Forecast 3 and c¢ = (.66 for Forecast 4). That is,
?

0,1
the forecast experiment started with a divergent initialization
produced the best scores.

Figs. 27a, 27b, and 27c¢ contain the correlation coefficient
matrices for the entire 12-hour period for Forecasts 3, 4, and 5.
The maximum correlation coefficients for the three forecasts were
0.77, 0.75, and 0.76 for Forecasts 3, 4, and 5, respectively. For
the entire forecast period, all three forecast experiments had the
highest correlation coefficient with no spatial offset of the forecast
and observed precipitation fields. Therefore, the objective procedure

detects no differences in the 12-hour precipitation forecasts when

divergence is included in the initial conditions.
7.3.2 The total precipitation amounts and the precipitation rates
Fig. 28 contains the total precipitation amounts for each hour

through the forecast period for each experiment as well as the total

depth of observed precipitation. The amounts were summed for the
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0.35
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0.36

b.

Cc.

0.40
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0.37
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0.57

0.66

0.66

0.61

0.55

Forecast 4.

0.59
0.72
0.75
0.66
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0.63

0.74

0.74

0.70

0.61

Forecast 5.
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0.50

0.42

0.52
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Correlation coefficient matrices from the
objective precipitation scoring procedure
for the first three hours of the forecast.

st san A AR 4R W

e




I
149

i

0.63 0.64 0.64 0.55 0.43
' 0.67 0.69 0.71 0.62 0.49
' cC =1 0.68 0.72 0.77 0.69 0.53

0.70 0.76 0.77 0.70 .53

0.62 0.67 0.68 0.61 Q.46

a. Forecast 3.

0.66 0.67 0.66 0.55 0.42
0.69 0.70 0.71 0.61 0.48
cC= 0.69 0.72 0.75 0.67 0.52
0.70 0.75 0.75 0.67 0.50
0.61 0.66 0.66 0.59 0.43

b. Forecast 4.

0.67 0.67 0.65 0.54 0.41

0.70 0.71 0.71 0.60 0.47
c=1{0.70 0.73 0.76 0.66 0.51
0.76 0.74 0.66 0.49

0.63 0.67 0.66 0.59 0.42

c. Forecast 5.

o= m—— ——— ——— PR pr—
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Fig. 27. Correlation coefficient matrices from the
objective precipitation scoring procedure
[ for the entire 12-hour forecast period.
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precipitation

Time (h)

Fig. 28. Total precipitation depth (cm) for the entire domain for
Forecasts 1 through 5.
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entire domain in order to compare the total depth of precipitation

for each forecast with the observed precipitation. Multiplying each
depth by the area of a grid square would yield precipitation volume.
The total amount of precipitation forecast by the model is a useful
statistic because the forecasts over the whole domain can be compared.
Similarly, Figs. 29a and 29b present the total precipitation depth
forecast by the convective and nonconvective precipitation parameteriza-
tions, respectively.

For the nondivergent experiments, a slight decrease in the total
precipitation occurs from hour 1 to hour 2 followed by an increase
each hour to the maximum amounts in hours 7, 8, and 9. Then the
amounts generally decrease for each hour through the end of the
forecast. The behavior of the convective and nonconvective precipitation
follows the same general pattern. However, Forecasts 1 and 2 have
consistently smaller nonconvective precipitation amounts after hour 3.
In contrast, the total precipitation for the forecast from a divergent
initialization (Forecast 5) is more uniform throughout the forecast
period. The precipitation from Forecast 5 does reach maximum values
in hours 7, 8, and 9, and these maximum values are approximately

equal to Forecasts 3 and 4 for those hours. However, the maximum

values are only about 20 percent greater than the first and last
forecast hours. The observed precipitation is about uniform throughout
the forecast period although there is an increase in the last three
hours. Recall the 500-mb RMS omega curves of Fig. 24. The relatively

constant curve for Forecast 5 is reflected in the relatively constant
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a. Convective precipitation.

Nonconvective precipitation (cm)

b. Nonconvective precipitation.

Fig. 29. Total precipitation depth (cm) for the entire
domain for the convective and nonconvective
precipitation parameterizations for Forecasts
1 through 5.
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precipitation amounts for each hour. The greater variability of the
curves for Forecasts 3 and 4 is reflected in the greater variability
in the precipitation amounts by hour for those experiments. Note
that the maxima in the RMS omega curves for Forecasts 3 and 4 occur
at hour 5 while the maxima in their precipitation amounts occur later
in the forecast period. Therefore, the 500-mb RMS omega curves are
not perfectly correlated with the precipitation amounts. Instead,
it is suggested that a greater variability in the RMS omega curves
implies a greater variability in the rainfall amounts, but that the :
maxima in the two do not necessarily coincide.
The 12~hour precipitation depths summed for every grid point
over the domain for the experiments are 55.2 cm, 50.5 cm, 58.8 cm,
65.6 cm, and 72.9 cm for Forecasts 1 through 5, respectively. Note
that, for the entire period, Forecast 5 produced 32, 44, 24, and 11
percent more precipitation than Forecasts 1, 2, 3, and 4, respectively.
However, the l2-hour precipitation total for Forecast 5 is only 58.1
percent of the observed precipitacion total. The 12-hour observed
precipitation is really an approximation because precipitation is
sampled only at a few points. Also, there is evidence of convective
activity in Fig. 1lb (small~scale peaks in precipitation amounts). .
A model with a grid increment of 120 km cannot be expected to forecast
small (e.g., 30 km by 30 km) areas of convective activity. For this ;
reason, the model should not be expected to forecast 100 percent of
the observed point values of precipitation, when these values are

not representative of grid-square averages. In spite of this, the
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precipitation forecast for the divergent initialization is a
significant improvement over the other forecasts.

For all the experiments, the total precipitation for hours 7
through 12 is about the same. Therefore, the difference in the
12-hour forecast amounts is due almost entirely to the first 6 hours
of the forecasts. Additionally, most of the difference in the first

6 hours occurs in the first 3 of those 6 hours. In the first 3 hours,

Forecast 5 produced 89, 118, 83, and 56 percent more precipitation

than Forecasts 1, 2, 3, and 4, respectively, This precipitation

increase is directly attributable to the divergent initialization.
When nondivergent initial conditions are used, the model did

produce about the same amount of precipitation in the last half of

the forecast as it did with divergent initial conditions. The non-
divergent forecasts did not "overshoot'. That is, they did not
precipitate more than the divergent forecast later in the 12-hour
period. If the nondivergent forecasts did overshoot, they would begin
to catch up to the total 12-hour amount produced by the divergent
initialization. Therefore, the precipitation lost at the beginning
of a forecast started from a noundivergent initialization is not
recovered.

For Forecast 5, the initial slight increase in the 500-mb RMS
omega curve in Fig. 24 and the more realistic precipitation amounts
in the first 4 hours of the forecast are the best indicators that the

model did indeed remember the initial divergence.
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The usefulness of divergent initialization is not just the
additional precipitation in the first 6 hours of the forecast but also
the relatively constant precipitation rate. Although precipitation
does not necessarily occur at an almost constant rate, it did not
occur in the pattern of amounts shown by the nondivergent forecasts
either. That is, the amounts in Fig. 28 for the nondivergent experiments
reflect the anomolous divergence associated with the geostrophic
adjustment process in the model. The divergent component gradually
builds up, overshoots the balanced state, and then gradually oscillates
about the balanced state. This is the principle cause of the
oscillation in the precipitation amounts for the nondivergent forecasts.
However, in the divergent initialization experiment, the model was
closer to an initial balance between the nondivergent and divergent
components. Hence there is less tendency for the model to reflect
temporal maxima and minima in the mean precipitation amounts that are
as extreme as for the nondivergent forecasts.

The precipitation fields for Forecasts 3, 4, and 5 will now be
compared with each other and with the observed precipitation.

Figs. 30b, 30c, and 30d are the forecast precipitation amounts for the
first three hours for Forecasts 3, 4, and 5, respectively. Figs. 31b,
31lc, and 31d are the forecast precipitation amounts for the 12-hour
forecasts for Forecasts 3, 4, and 5, respectively. Figs. 30a and

3la are the observed precipitation amounts for the first three hours
and the entire 12-hour period, respectively. There is some evidence

of noise in all the forecast precipitation figures. For example,
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the small area of precipitation in the northwest corner of the domain
is due to boundary-generated noise and 1s not meteorological.

In comparing Figs. 30b, 30c, and 30d, note that the 0.25~-cm Y
contour in Fig. 30d covers a larger area than in Figs. 30b and 30c.
It is apparent that more precipitation occurred in the first three
hours of the forecast with divergent initial conditions. For the
12-hour forecast precipitation amounts, the 0.25-cm contour in
Figs. 31b, 31lc, and 31d covers about the same area. Again, the
highest amounts appear inside the 0.25-cm contour of Fig. 31d.

Since the model did produce an improved precipitation forecast
with the divergent initialization used in Forecast 5, especially in
the first few hours, the initial divergence was 'remembered" or
retained by the model. That is, the initial divergence was not
dissipated by internal gravity waves before it could be supported
by precipitation and the associated release of latent heat. Since
the precipitation occurred in the correct locations, the divergent
wind fields and consequently the diagnosed omega field were
suff .ciently accurate to be useful in divergent initialization.

In order to show that the model did retain the initial divergence,
the initial precipitation rates at several locations will be
examined. These locations are plotted in Fig. 32. The points were

selected because most of those locations had significant precipitation

Edaee & 2 U REN Y BPPRY I

at the initial time. For each location in Fig. 32, Fig. 33 contains
the forecast precipitation for each 0.l-hour interval for the first

1.6 hours of the forecast period. Fig. 33 also contains the "observed"
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Fig. 32. Locations at which the initial
precipitation was examined.
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b. Location 2.

c. Location 3.

0.06
0.04 Location 4.
bt
0 01 0203040506070809 10 LI 1.2 L3 14 1S 18
Time ( hours)
| - g 1 2 ' 8 1 ) B ) 2 ¥l | [ Il 'y 1]
O 2 4 6 8 10 12 14 16 I8 20 22 24 26 28 30 32
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Fig. 33.

Initial precipitation rates (cm h-l) at the locations
in Fig. 32 for the first 1.6 hours of the forecast
from Forecast 5. The dashed line represents the
"observed" initial rain rate as depicted in Fig. 13.
The solid line is the precipitation amount for each
two time-step period (0.1 hour).
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Fig. 33. (Continued).
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initial precipitation rate. The observed rate was taken from the

same four-hour average precipitation rate that was used for the
diabatic term of the omega equation (Fig. 13). The purpose of Fig. 33
is to show how well the forecast initial precipitation rate for
Forecast 5 matches the observed initial precipitation rate. At most
of the points, the forecast initial precipitation rate is near the
observed rate. Also, the forecast rate is relatively constant
indicating that the initial divergence did not dissipate or migrate
away from the initial precipitation area. The worst result was at
location 5. It is near an area of relatively light observed initial
precipitation. Also, the initial moisture analysis indicates that
location 5 is on the edge of the saturated area. Therefore, the
initial divergence probably did not initiate precipitation fast <nough
for the divergence to be maintained. Recall that saturated initial
conditions are essential for divergent initialization in areas of
initial observed precipitation because immediate latent heat release
is required to maintain the upwurd motion associated with strong
convergence. Otherwise, the initial divergence would be dissipated
by intermnal gravity waves.

Fig. 33 demonstrates that the initial divergence is retained
reasonably well. However, it is possible that the initial divergence
produced precipitation at an unexpected location. For example, the
precipitation that was expected at location 5 could have occurred

to the south or southwest of location 5. This possibility will be

examined in Fig. 34. Figs. 34b through 340 contain the initial
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forecast rain rates (0.05 cm h-l contour interval) for each 0.l-hour

period for the first 1.4 hours of the divergent initialization

experiment for that portion of the domain which had the highest

,,__.w__————
e o
s pums e OB

observed initial precipitation rate. For comparison purposes, Fig.
34a contains the observed initial precipitation rate (0.05 cm h-1
contour interval) as well as the five locations from Fig. 32 that
fall within the area of heaviest precipitation. First, note that the
zero contour is forecast well in the northwest, east, southeast, and

southwest portions of the region portrayed. Second, the highest

initial precipitation rates occur on too small a scale to be retained.

Sufficient vertical motion to sustain them was probably not diagnosed

by the omega equation on that scale either. The largest forecast

rain amounts that did occur are in Fig. 34b. These could be due in

favedal

part to the relatively high initial noise level since no attempt
was made to obtain a divergent wind component that was exactly X
compatible with the nondivergent wind component. Third, although

the forecast C.1 cm h-1 contour covers a smaller area than the

observed one, note that it consistently remains about the same size.

It i{s almost exactly the same size in Figs. 34d through 34h and again

in Figs. 341 through 340. There are no rapid changes in the

forecast pattern that would be associated with the dissipation of

the initial divergence. Fig. 34 shows that the divergent initialization

experiment did not forecast the total observed amount because the

highest observed precipitation rates were not duplicated and because

the area of heaviest forecast precipitation was not as large as the

corresponding observed area.




-
|

oty e B A — . —
- > de N .:,4 N
N L » H s, » .
R T W e S
A
i

)
!

e

' z l
. 168 i
,- ‘ |
' Figs. 33 and 34 demonstrate conclusively that the initial 2 |
P : !
i l precipitation rates were steady and duplicated the observed initial
rates reasonably well. The divergent initidlization was useful in :
!: improving the initial precipitation rates. The following are possible % b
!
- reasons why the divergent initialization experiment did not duplicate

the observed initial precipitation rate exactly: i

(1) The forecast model's cumulus parameterization, which

was responsible for most of the initial precipitation,
might not be producing precipitation at the correct

o rate for the given profiles of specific humidity and

& the dynamic variables.

(2) The moisture analysis may not have been saturated

over a large enough area to support the necessary

latent heating rate implied by the initial vertical

RGPl S SPVESR  SE

motion field.

(3) The initial divergent wind component was not completely
compatible with the nondivergent component.

(4) Some of the initial divergence may have dissipated

before latent heating had time to support it.

(5) The heaviest observed precipitation rate occurred on
a scale too small for the omega equation and/or the

forecast model to represent on a 120-km grid mesh.
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For this case divergent initialization significantly improved the

short-range forecasting of precipitation with a mesoscale numerical
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weather prediction model started from a static initialization.
Greater improvements would be likely for cases with higher precipitation

rates at the initial time.
7.4 Chapter summary

In this chapter five 12-hour forecasts were compared in which
the forecast model was initialized in different ways. The five
initializations were presented in Fig. 20.

The external gravity-wave noise characteristics of the forecasts

p 32
as measured by |3—i| and | P

= | were not greatly different although

the forecasts from unbalanggd initial conditions contained more noise.
These measures of noise levels were comparable to those values
reported by Anthes (1978) and Bleck (1977). Sundqvist (1975) reported
that a lower noise level resulted from an initialization on sigma
surfaces. We did not obtain a reduced noise level in the experiments
balanced on sigma surfaces. This was probably due to the smaller

grid increment, unsmoothed terrain, and limited domain used here.

The 500-mb RMS omega curve for the divergent initialization (Forecast 5)
was significantly different from others as it exhibited less
variability during the 12-hour forecast. The internal gravity-wave
activity in the forecast from the divergent initialization was
therefore more uniform and the model was initially closer to a

"balanced" state. The 500-mb RMS omega graphs exhibited similar

behavior to those of @kland (1970).
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The forecasts of sea level pressure, temperature, and wind fields
were not significantly different in terms of RMS error. That is,

the divergent initialization did not improve the forecast of these
variables. The S1 forecasts for sea level pressure were best for the
unbalanced experiments, especially for the forecast initialized
directly with observed data.

The precipitation forecasts were compared in several ways. The
forecasts for Forecasts 3, 4, and 5 were scored with the objective
procedure presented in Appendix 3. This procedure is a type of
pattern recognition evaluation and can determine if the forecast
precipitation is in the correct location when compared with the
observations. When measured with this technique, the forecast with
divergent initial conditions did much better in the first three hours.
However, over the entire forecast period, all three forecasts scored
equally well. .

The total precipitation amounts over the entire domain were
compared with the observed amounts. It was found that the amounts
for the nondivergent experiments gradually rose until about hour 9
and then gradually decreased. Although a maximuh occurred in the
divergent forecast at about hour 9, the precipitation amounts were
relatively uniform for the entire forecast period. The changes in
forecast amounts for the nondivergent experiments were related to
the adjustment occurring in the model. In the forecast with
divergent initial conditions, the model was much closer to a balanced

state at the beginning of the forecast.
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Forecast 5 produced significantly more precipitation in the
12-hour forecast period. Much of the improvement in the forecast

precipitation amounts came in the first three hours. The nondivergent

BT o A

forecasts started with a precipitation deficit and did not make up
that deficit later in the forecast. The best short-term precipitation
forecast was obtained with the divergent initialization.

The initial forecast precipitation rates were studied at selected

points and for that portion of the domain containing the highest

T TR, ST D it

precipitation rates. The initial precipitation rates were nearly

uniform and the area enclosed by specific contours was relatively

constant. Although the highest observed initial precipitation rates

were underforecast, both in terms of maximum rate and the area covered

by a given contour, the forecast model did indeed retain a substantial
portion of the initial divergence.

Divergent initialization on the mesoscale was successful in

the forecast in two ways: (1) the initial precipitation rate was
almost uniform and allowed significantly higher precipitation in the
first three hours, and (2) the total precipitation amounts through !

the entire forecast period were more realistic.

S I (R W

l improving the precipitation forecast for this data set. It improved
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8.0 SUMMARY AND CONCLUSIONS

Numerical weather prediction in general, the initialization of
primitive equation models, and previous attempts at the initialization
of the divergent component of the horizontal wind were reviewed in
this thesis. Most prior divergent initializations were on the
synoptic scale and, on that scale, had little effect on the initial
precipitation rate.

Scale analyses were conducted to establish the form of the
vertical velocity and divergence equations appropriate on the mesoscale.
The effect of the assumptions used in neglecting the time dependent
terms in the vertical velocity and divergence equations was analyzed.
The scale dependence of divergent initialization on the synoptic and
mesoscales was examined. For the vertical velocity equation on the
synoptic scale, the diabatic term is of the same order as differential
vorticity advection or the Laplacian of temperature advection. Also,
the Coriolis term was important. On the mesoscale, the diabatic
term dominated in precipitation areas and must be included. The
Coriolis term was not nearly as important on the mesoscale as it was
on the synoptic scale. For the divergence equation on the synoptic
scale, the Coriolis term was on the same order as the other most
significant terms. However, on the mesoscale, the effect of the
earth’s rotation was less important.

The general divergent initialization scheme required the solution

of elliptic partial differential equations on a limited domain.
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Since the domain was not cyclic or periodic, boundary conditions on
l the dependent variables were required. After an examination of what
properties the boundary conditions should possess, suitable boundary
|. conditions for geopotential, omega, and stream function were stated.
!i A new method for the determination of boundary condition on velocity
| potential on a limited domain, mathematically equivalent to a Green's
j [ function solution for an infinite domain, was found such that the

low~wavenumber boundary variation of velocity potential was accurate.

W PPTE TET—

This method's effectiveness was demonstrated on analytic velocity
potential fields.
The forecast model used, the PSU mesoscale model, and its

nondivergent initialization scheme were discussed briefly. The

synoptic case chosen for study was also presented.
The finite-difference form of the omega equation was derived.

From experiments conducted with this equation, it was concluded:

(1) The quasi-geostrophic omega equation with a diabatic
term overestimated omega, especially in precipitation
areas.

(2) The diabatic term in the mesoscale omega equation

was the single most important term.

[P -

(3) The largest single uncertainty in the determination of

omega and the divergent wind component was the

representativeness of precipitation observations.

ST

components themselves. The uncertainty was large

PREE SRS

L
! l This uncertainty was transmitted to the divergent wind
A
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enough that there is no advantage to calculating
vertical velocities directly in sigma coordinates

in order to avoid interpolation error.
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The balance equation consistent with the model was derived in

finite-difference form in sigma coordinates.

applying the balance equation was outlined.

Five experiments were conducted which started from the same

synoptic time but which were initialized in a different manner.

The initializations were:

1

(2)

3

(%)

(5)

independent (unbalanced) analyses of winds and
temperatures;

as in (1) except the divergence was removed from
the winds;

nondivergent winds, geopotential calculated on
pressure surfaces from the balance equation, and
hydrostatically derived temperatures;
nondivergent winds, geopotential calculated on
sigma surfaces from the balance equation, and
hydrostatically derived temperatures; and
nondivergent and divergent wind components,
geopotential calculated on sigma surfaces from the
balance equation, and hydrostatically derived

temperatures.

The procedure for
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At the completion of each balanced initialization, superadiabatic
lapse rates were present in the lowest model layer in the vicinity
of the surface low pressure area. These were removed by applying a
convective adjustment procedure to the balanced data.

The forecasts were compared and the following conclusions were

reached:

(1) There was no large difference in the external gravity-

wave noise characteristics of the forecasts as measured
2
Px 9Py
by graphs of IEE—I and L-—E versus time. However, the
It

forecasts with unbalanced initial conditions had a
consistently higher noise level than the balanced
forecasts.

(2) There was no significant difference in the RMS forecast
errors of sea level pressure or temperature and the wind
components at the 400~, 500-, and 700-mb levels. This
result was expected. The Sl scores for sea level
pressure were best for the experiments with unbalanced
initial conditions.

(3) For the experiments with balanced initial conditions,
the precipitation forecasts were scored by an objective
procedure. For the first three hours of the forecast,
the divergent initialization experiment scored higher
than the other forecasts. For the entire 12-hour

period, gll the forecasts scored equally well.
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The nondivergent forecasts experienced a precipitation
deficit in the first half of the forecast period
because the model had to develop a divergent component.
They produced nearly the same amount of precipitation
as the forecast with divergent initial conditions during
the last half of the forecast period. Therefore, the
divergent initialization produced the most accurate
precipitation forecast for this case.

The precipitation amounts for each hour were more
realistic in the forecast with divergent initial
conditions. The nondivergent forecasts displayed an
oscillation associated with the mutual adjustment of
the model's nondivergent and divergent wind components.
The model '"remembered" the divergent component in the
experiment with divergent initialization. The initial
precipitation amounts were nearly uniform. The area
covered by the highest observed initial precipitation
rates was underforecast and, therefore, the divergent
initialization experiment did not predict as much
precipitation as observed.

Since the experiment with divergent initial conditions
was initially closer to a balanced state and its
initial precipitation rate was the most realistic, we
conclude that the diagnosed omega values were sufficiently

accurate to be useful in the divergent initialization

performed here.

Py
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This thesis has the limitation that only one data case was

|
i l‘ studied. Even though this divergent initialization experiment
significantly improved the short-term precipitation forecast for this
[ data set, it cannot be concluded that divergent initialization will
[ improve the precipitation forecast in every case. However, the
divergent initialization procedure that was developed was general

“ and should produce improved short-range precipitation forecasts on

pe other cases.

S 8.1 Suggestions for further research

The balancing procedure described in Chapter 3 which is currently
used by the”PSU model should be improved. It can be made more
consistent with the model while still balancing on pressure surfaces.
Presently, temperatures are derived at dot points and then averaged
to get temperatures at cross points where temperature is defined in
the model. Temperatures should be derived directly at cross points
since every unnecessary averaging or interpolation step introduces
error in an initialization.

Manually digitized radar (MDR) data should be used to obtain
the precipitation rate required by the divergent initialization in the
omega equation diabatic term. These data are described in Moore et al.
(1974). MDR data can provide a precipitation rate which is more
spatially representative than raingauge observations, since MDR data

represent entire grid squares. MDR data can also be obtained more
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readily than rainfall observations. Unfortunately, MDR data are
available only over the eastern half of the United States and therefore
are of only limited usefulness.

The divergent and nondivergent initializations could be
improved by incorporating a three-dimensional analysis scheme before
the balancing procedure. This analysis should consider significant
levels reported in rawinsonde data. This change should improve the
vertical consistency between the mass and momentum variables, eliminate
most of the superadiabatic lapse rates, and therefore enable the
model to produce better forecasts.

The precipitation forecast produced by the divergent initializa-
tion presented here should be compared with a dynamic initialization
on the same data set. This would determine which technique produces
the better precipitation forecast. It is possible that the divergent
initialization would produce comparable forecasts and at a significantly
reduced computer cost.

The divergent initialization procedure should be applied on the
synoptic scale. Then the results could be compared with those of
other investigators.

For the forecasting of significant precipitation events, better
forecasts would result if a complete radiation parameterization were
incorporated into the model. This would be most useful in convective
situations.

The divergent initialization scheme presented here should be

extended to include the time-dependent terms in the omega and

e n e mm e

P

- e ———




Uy v
PEPVD R Y e
'i
179 !
divergence equations. The divergent initialization scheme could then
be used at grid increments as small as 10 km. At a 10-km grid ‘ ’
increment, an improved moisture initialization coupled with a ' 1
i

divergent initialization would perhaps yield even better precipitation ) L

-«

!

forecasts.

The divergent initialization scheme presented here should be
tested on a grid increment of about 60 km for a heavy precipitation
event. For example, the scheme should be quite useful at that grid
increment in the initialization of hurricane models. If precipitation
rate data is available (e.g., from satellite data) for a hurricane

case, this technique should provide a realistic hurricane

initialization.
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% APPENDIX 1

- DERIVATION OF THE FINITE-DIFFERENCE FORM OF THE OMEGA EQUATION
|

Recall :
i
2 i
2 dw 9 .
Viogw) + £z, == £ 0Vt Te
ap
3 R o2 R .2
+ =V Vg + =9V V VT + = V" V_ VT
f p ~X 5Ty -y p ~X
(2.23)
L d 32 3 Yy
- 4
- — — — — .V
E fapt;D+fapmap+fame 2p
R 2 9 9
-chQ+fapgapng
P
|
4 where g = - RT 238
] s po 3p
For each term, we will now derive its FD analog.
! l Tl: From (2.23a), we can get
g
E ‘ --REE_ L (Al.1) !
£ % T TP e P - : ;
o 4
i Applying (Al.1) at point (i,3,k#s), we get {
I | :
B . =0
§T T
l g s - pR spk#i - ~:+l!] (Al.1a)
: 1,900 Pt P By |
i !
i !
¢ {
,; i \
3‘
: i
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We will solve the FD analog of (2.23) for omega at full (standard-

pressure) levels except for the top (200 mb) and the bottom (1000 mb)

levels. Therefore, Og is interpolated to O using

- 1,5,k 1,1,k

9 . Since we do not have temperature data at the lowest pressure
1,1,k

level, we set ci,j,l - 01’1’2. Therefore, Tl becomes, for level k,

w

(¢ w +0
Ltk 781009k 141,31,k

84,31+1,k

+0 w, +0 We 1 o4l (Al.2)

11,5,k Thedok 8y g PL-LE
2 2

- 4o w, ) m/(Ax)

5,5,k K
or
Tl = mz(c w) + mz(o w) (Al.2a)
s 'xx s ¥y :

in FD notation at point (1i,j,k).

T2: fCa - fi,J [m(vi,j ,k)x - m(uisj sk)y]

dw 6m:l.,;],k
ap 6p,
2 Sw

s b i B
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Therefore,
s %914,k
T2 = £y Oy T B0y g0y B (a1-3)

The terms on the RHS of (2.23) are forcing functions.
yet know omega, we do not know uX or vx.
the terms we can compute:

T3, T5, T10, and Tll. Also,

functions will first be computed at half-levels.

Since we do not

Hence, we will first describe

the forcing

’ —a_ L]
R R I A RS
Prt1 7 P
EREN
= {u (¢ J_+v ¢4 ) (Al.4)
Prer P Vi,g,ke DLRIE Dy g gy LRy
- uwi,j,k (ci!jlk)x - vwi,j’k (;1’j ’k)y]
] R o2,
T3 R PR
R .2
= —— [m (m u (T )
Zpk“"i i,] i’j Wi'j’k_,_l i)j’k"'l X

4+m v (T
i,] ¢i,j,k+1 i,]

FP1 Y Tk

2
e )yhoe * Py Oyt (g s
(Al.5)

)y)yy]
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T10: -

where Q is the heating rate per unit mass. To determine the vertical

aan e ER e
o

distribution of Q, we follow Krishnamurti (1968a) and Anthes*. The i

specific humidity, q, 1is defined as the ratio of mass of water vapor

p—

to the total mass of air volume. If q is changing with time following

a parcel, then .

dh L4
it L 3¢ (A1.6)

is the heating rate per second per unit mass of air (L = latent heat

W fe L e = T

of condensation v 580 cal/g of water). We assume that, in areas of

precipitation, the air is saturated with respect to water vapor. 1In

A .

that case, expanding the material derivative on the RHS of (Al.6)

yields

dh 3q 3q

8 8
3c = - LG + VyVa, + o 3 (A1l.7)

Pt ey ity

Py

We further assume that, in regions of precipitation, the first two

terms on the RHS of (Al.7) are negligible compared to the third.

e ———— =

That is,

*Anthes (1976) assumed a parabolic distribution of omega in the vertical
arising from the latent heating. The entire portion of this description
dealing with the determination of the parabolic omega profile is taken :
from his unpublished notes. ' |
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Loy, (Al1.8)

Integration of (Al.8) over the depth of the precipitating column per

unit horizontal area can be written
p P aq
%Itg-lldp--dg-%Jtlﬂ_sdp . (Al-g)

We can calculate %%,

from the rainfall rate, R (cm/d). First convert R to mass/(cmzs):

the heating rate through the column per unit area,

-1 5

-2 x 1 d/8.64x10° s

em H0 a1 - g cm © H0 d

1.1574x10° g cm 2 st H,0

6.71x1073 cal em 2 st

>

281 joule m 2 s 1

Therefore,

%% = LR = 281 R . (A1.10)

Combining (Al.9) and (A1.10) yields

=1.13% R g s~ H,0 for [R] = cm d™*

2 (Al.11)

- 1.134x10° R b 87t

i,
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Fig. 35. Parabolic convective omega profile.
aqs

Now, we know 3;— from the initial data since we know the temperature

at the pressure surfaces.

The third assumption in the determination of Q is that the omega

profile that results is quadratic in pressure (re“srence Fig. 35).

w(p) = a + bp + cp® (A1.12)

The boundary conditions on the omega profile are

w(Ps) - w (Al.13a)

t

and

w(pc) =0 . (A1.13b)
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We also know that
l w(pm) =w. (Al.13c)
i.
[ Therefore, we can write
w_=a+bp + cp 2 (Al.14a)
t s s
' ~a+bp +cp? (Al.14b) 1
mmax a Ptn ch ‘ . L
l i
0=a+bp + cp 2 (Al.l4¢e) g
t t i
?
‘ i
Eliminating a between (Al.l4a) and (Al.l4c) yields .
w, = b(p_-p ) + clp z-p 2) (Al.15a) .
l t st s 't : : :
l Eliminating a between (Al.l4a) and (Al.14b) yields "
2 2 '
l T b(ps-pm) + c(ps P ) . (Al.15b) .
;
l Dividing (Al.15a) by (ps-pt) and (Al.15b) by (ps—pm) and eliminating §
b between the resulting equations yields !
l !
W, ~w w !
t max t vl
c= = -— . (Al1.16) i
l (pg=pPy) (Py~P.) PP, 3
! i
i
| .
i 9
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We now get b in terms of ¢ from (Al.15b):
“¢"“max
b = ﬁ - c(ps+pm) . (Al.17)

Given b and c, we obtain a from (Al.l4c). Then (Al.12) can be solved
for omega at any pressure level.
To calculate c, we need to know ©rax’ We write (Al.11) in FD form

as

KMAX

= ’
kil Opetlg <’5qk_+.;2 R (A1.18)

where R' = 1.134x10_6 R and KMAX is one less than the number of levels.

Substituting (Al1.12) into (Al.18) yields

KMAX KMAX KMAX 2
= 1
kfl a&qk+% + kil bpk+;5 6qk+% + kil P g qu_'_;i R" . (Al.19)

Equation (Al.19) can be rewritten

af1 + bf2 + cf3 = R' (Al.20)
where
KMAX
f. = I 6q , (Al.20a)
gy

% s B e bs AL ety e e

T T e oy -

——




Note that we can calculate fl’ fz, and f3- Solving (Al1.20) for c yields

- '*§v5j?'}‘ s
\ ,.w_:.-.»-" By Lia e ST
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il o
! £2= I Pry S (AL.20b)
| k=1
B
‘ and
l 2
[ f3 = kfl Pl 6qk+% . (Al1.20c)

l GEE W N T W ER T MR s e

R' - af. - bf
c = fl z (A1.21)
3

Now, solving (Al.lé4c) for a yields

2

a= - bpt - P,

(Al.21a)

Using (Al.17) in (Al.21a) for b and inserting that result into (Al.21)

leads to

Y “max
o (Lmax

=L ir -
° =% (R = clpte) ] p,
2 Y " nax
+ cp, } £ - ( PPy - c(ps+pm)] f2] (A1.22)
Yt “nax
1]
R' + —p - (ptfl + fz)
s ‘m

ptfl(ps+pm_pt) - f2(ps+pm) +f,

Let h be the denominator of (Al.22). Now, substituting (Al.16) into
p.-P

]
PP,

m

(A1.22) and solving for ®oax using the result that = 1/2, we get

PRSP S

P

e ——— o+ Al G o v
3




R

s PR und R AN TR YT Raey e e

o, - o (p-p ) £ -f))

R'(pg-p ) (p ~P,)

W = h

h

P_-P
m t
1-— (ptf1+f2)
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(Al1.23)

To summarize, we can calculate from observations R', fl’ f2, f3,

Pgs Wy and upon setting P, we know Py
to get Woax®
(Al.1l4a) to get a.
(Al.12).

can return to (Al.ll) and calculate

Gqs
(.2 a—Lao _k_ﬁ
ks ks 5pk+%

where

ees

- kthy

qg >
k+s k+s
m L

0.622 v . 1

= === x 0.611 x exp {5 (555 - 77—
Py R 273 T

Finally, given ék+%’ we calculate T10 using

R . .
— [(Qk+!5)xx + (Qk+*5)yy]

3 Fg
Til: T11 = £ '35"

1
kHs

We then use (Al.22) to get ¢, (Al.1l7) to get b, and

13

Therefore, we can use (Al.23)

Omega as a function of pressure is now given by

Since we know the omega profile due to latent heating, we

(A1.24)

(Al1.25)

(Al.26)

o b miem e -
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First of all, this term only applies in the lowest level (K=KMAX + 1).
Secondly, it only applies to the lowest 10 cb of the PBL. Hence Ap

in T11l is 10 cb. As in the forecast model,

Fry = 8 05 ¢ Voaxsl Yiax+l (A1.27)

where Frx is the x-component of the frictional force, ps is the
surface air density (here, 1073 g cm-3), Cp = 0.002, wp, o, is the

1000-mb u component, and V is the 1000-mb wind speed, calculated

KMAX+1
from
2 2 &
Viemax+1 ~ ouaxsr * Vioaxs1) (a1.28)
Similarly,
Fry = 8 05 O Vioaxer Viomaxsl (A1.29)

Recall that we now know the forcing functions T3, TS5, T10, and
T1ll at half-levels. Therefore, we interpolate them to the full levels

from K = 2 through K = KMAX, Let Fi i,k represent the total forcing
» b4

function at each grid point. We can now rewrite T1, T2, and Fi i,k°
b »

using (Al.2a) and (Al.3), as

1,3 [(°si’j’k “i g kK0xx t ("si,j,k w90 yy)

——— R
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Mathematically, this 1s a second-order elliptic PDE and, given

boundary conditions on the top, bottom, and side faces of the domain,

(A1.30) can be solved by a standard relaxation technique (Haltiner,

1971). The appropriate boundary conditions that will be used are . »

given in Section 2.3.3. Let R: i,k be the residual (the difference
9’ ]

between the LHS and RHS of (A1.30)) after the nth iteration using

n nt+l n+l
wi,j,k' 1,1,k such that Ri,j,k

leaving out map factors, we write

Then, we want to find w = 0. First,

wamm Ea e D s
-

n 1
(ax)

bl
L}

n n
7 [(ogw dirt, i,k T 969 )15k

]
(Al.31)

- e

] n n n
'¥ O e Y O )y g T 4009 )y

2B -mn - wn
i,k [ i,3,k-1 i,j,k
Pr-1"Pr+1 Pr-17Px :

+

n - n
1,1,k “1,j,k+1]

PP+l

w

- F
1,3,k .

+ +
where B Adjusting w?,},k such that R:,},k =0

1,3,k © f1,5 b1,

gives

B e

1
(4x)

n n n
0= === 100001 g,k ¥ ¥ iy 1,0 Oy g1k

n n+l |
+ (o0 )i,j—l,k - 40w )i,j,k] (A1.32)

|
n n+l n+l n |
W !
|

2By 4k L4kl T Y00k YeLgk T “1,1,01

Pr-1"Pr+1 Pr-17Pk Py Pyl f
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Subtracting (Al.31) from (Al.32) and simplifying yields

i |
“4,4,k ~ “1,1,k 5
(Al.33) L
Rn Lo "

1,1,k !
* %o : {
1k, Pige 11 |

(4x)%  Pk-1Pr#1 Pi-1"Pr P Pisl

After applying (Al.33) repeatedly, we will have omega at every grid

point in the 30 x 35 x 7 domain. With this knowledge, we can apply

the method for the determination of Xg discussed in Section 2.3.4 to
determine ux and vX at the half levels. Interpolation provides uX and 3
vx at the full levels. Now we can return to calculate the remaining '

forcing functions in (2.23). They are T4, T6, T7, T8, and T9.

T4: This term is exactly like T3 except in (Al.4) replace uw ,
i,j,k
u v , and v with u s

¥ ’ " u
1,1,k4¢1  Y1,1,k 1,5, k+1 X135,k X4,k

*

v ,
X1,3,k

and v , respectively.
1,5,k

P—

T6: This term is exactly like TS5 except in (Al.5) replace uw ,
1,3,k

uw , v¢ , and vw with u , u s V R
1,3,k Y1,1,% 1,5,k+1 X1,5,k Xi,5,k+1 4,1,k

—

and v , respe~tively.
X1,3,k41

NN PN N WSy DERE  EREN R PR bt G e S ey e, R ) PR e e

WL—
| - : - - R e e mots. AR (o S Sy il ST

B 2 o —yr——y:
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) !
T7: £ -— cD i
-j,l' D is available from the determination of u_ and v_ since -
i,3,kHg X X : |
g | i
8
2 Yk
=D B o — . .
¥ | V" x4, 5,0 ™ Pa, g, 5, (AL.34)
I Therefore, we can write T7 as
h 4: l GCi j k-p}, :
: fi,j Di,*,k*"i 3 (Al.35) ‘.
4 3] 1
7 T7 is valid at half levels. i
E ‘ i
. . »
2,3 *~
' ' T8 f 3P w % 2
' 5 - & .
T8 fi,j 3p mk _6P ci,j,k (Al1.36) ;
k k
' [ T8 applies at full levels. N
- >
i l' T9: £ uedo vy
! : ’ ap 2 op ;
g .
N § t
3 [ Tg-f“(S [wijk - v, -8k E§_“w ] (A1.37) !
»J Py Pr ¥1,1,k 2d2%y OP ¥4 4.k }
T9 applies at full levels.
To incorporate these terms into the omega relaxation scheme, we ‘
i
must first interpolate T4, T6, and T7 to full levels. Note that T8

GANE} NN MmEy NG ey
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and T9 already apply at full levels. Second, only one of the above

terms contains wy 1,k itself. Expanding (Al.36) we get, for the nth
[ R i

iteration,

n By 51 = %)

[l W + w
2 i)j sketl i’j ’k pk+l-pk

LW
Pretds Proiy
(Al.38)

MRS RS
PPl

1 ,n
- 2 (wiijvk * mi,j,k—l

We can now place this term on the LHS of (Al1.30), perform the appropriate

o et U5 AR A Sl e e S

y
l modification to (Al.31) and (Al.32), and in place of (Al.33) we get
| A
n+l = n 14.1 2k
Wi ik T Y,k Y TI F 12 + T3 ¥ T4 (a1.39) :
where
l lms
T1 = —Ladok
l (ax)?
2B '
l T2 = i:j:k ( 1- + -1 ) , ‘:
Pr-1"Pr+1 Px-1"Px Pk P+ -
| ry - 2G0T g
- - v
l (pk_1 pk,d) (pk_1 pk)
and o
l 1
I WLIW R SRR Y |
' (Py—1"Pyt1) Py Prs1) f

e = e e e




permitted by (2.23) and the observations.
velocity potential, the latter of which provides ux and vx.

on sigma surfaces.
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After applying (Al.39) for a sufficient number of iterations over

the domain, we have omega defined over the domain to the accuracy

Given omega over the domain, we can compute the divergence and

This

completes the set of data required for the divergent initialization

B e

e

T
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APPENDIX 2

DERIVATION OF THE FINITE-DIFFERENCE FORM OF

THE BALANCE EQUATION

The term designators used refer to the terms in (6.6).

Tl and T2:
m
— o dad - -
°xi,j 20w Prag, g0 b Pon gal T o 1oy T $aok gy

where 1 and j refer to dot points.

—y m
e A s 15 1 - -
D veall CHR UL JRPREL L JR PR

o hin, A VUM e e S e B

T - -
M yeanil ST ISR U F S TR T

m m
- ~y - i)j i#i)j"'si - -
L = (o, )xi g e v CHR RO N N I L
2
+ ._i‘:;!dfi + ¢ ) |'
{

Tae - Opqe Y 0oy 34 T %15 T %11,

_ Dy, 4ok - -
zar Ourr,g T 05 7 b1, 51 T 410

N I

45X 1,3 F %1, 7 04,31 T %1-1,5-00 ]

where 1,j now refer to cross points.




L7
Similarly, for T2,

1.3 - -
o Ogasg, qatg ¥ Opag gy ~ Ogds, g5 T Paok, g

—-—X
I4,3

where i,]} refer to dot points.

—x
= (¢ ¥ __:.i____n.iﬁ - -
7= Gy ; aax @, gen ¥ taa,s 7 %00 7 0,0
i vean CH R MR AR P Y
m
e 75 e 1 - -
e Oy ge1 Y05 T %1 g0 T baen,y)
m
o _i-%,9-% - -
o (g gt 0y g Tty T %ag,y-1)]
where i,j now refer to cross points.
Summing T1 and T2 yields the LHS of (6.6):
BN
1+ T2 = 2am)2 [y gufier, 390 ¥ By, 1441, 341

* o, g-lie1, -1t i, g-nt-1, 31

= (B st Pang gt T Paakg, g T o )¢ )

Note that in FD notation,

oy
bomy Mg g P g Py g P g

P AP D) S eyt ot M S

o Ae—am .

e ey e m o
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The RHS of (6.6) (terms T3 through T12) are the forcing functionms.
x
Once these are evaluated, they can be used with the expression for b

the sum of Tl and T2 to solve for ¢i y° ; )
’

T3: ur = B(ui 34 + uy j-k) where 1,] refer to dot points.
’ ]

- - |
Note that p,u = up,™ . Let pi,j Py 1,3 and let 1

Then 2| -4—1— (Agyg g+ 280 A5 ) .
m 1’j mi’j ,j ’j ’

A3 T P1,3%,5

l .
R el (. + 24 + A )
1,9 = 8 ‘m L el T T, a0 T T, 04

e BN AS S b

Y o, Beeg T B g T A g :=

m

—X i 1

(uX T3a) = B P T I .
x 164x mi,j+1

Aipr, g0 T 2y g0 ¥ A0, 340

i,]

- (ui,j + “1,_1-1) -———m: ] (Ai+1,j + 21*.1'j + Ai_l,j)

— —

1

P (Agar,g-1 ¥ 2y, 5-1 YA 50

- —_—
i,3-1 P {

— e ——

i

I

I

|

|

I

I

|

I

|

l

I bl gy By A 0
|

I

i

!

i

!

!
—_—
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Let Ali,

TR T I TE R TR S R VI g

A2y " B, Y 2y T ALy

A3y g " A1, g1 T Bl YA

T

Simplifying yields

(u -u )
+ i,3+1 i,3-1 A2

m o4 [(“1Jj+1 +oug )
’j mi,j i’j

Teax U Al,

(u* T3a)_ =
x mi,j+1

PP

(uiil"- “1,1—1) 0 ]
m i,]
i,j-1 *

m
T3b S 3 (u” T3a)
i,] pi’j x

AP e W A M S 1 s g ™

2
m (u +u, ) (u -u )-
L 1,1 SR Lo Wi 5 LAV 0% 15 Sl 15 1 LAY

l6pi’ij mi,j+l i,3 mi,j i,

PORF IR X3

AT W S L

miaj"l i’j

1 f
" Teax 13,4

where 1i,j still refers to dot points.

m
i ke (T3c

T3 = + T3 - T3 - T3
5,09 T T a2 ot an T T ge T P g 7 T )

Note that 14#4,j+s is a cross point. For example,

e .

1
4
{
i
{
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2
(ypy, 942 ¥ Y4, 440)

T3

Nl €5 .5 4

€141, 341

(u

Piy, 54

141, 4+2 = Y41,

Bi+2, §+2

)
1 a2

+

B4, §41

)

141, §+1

Ali+l Jj+l

- iy 4 = %4 ¢ A3

Ti41,§

i+1,j+1]

T4: Note P,V = VP, Y, Let pi,j =P, Y and B = pi,jvi,j .

X
B -2
Then = |1,j tmy By,ge0 ¥ 2By 3+ By 4y
—y
BX 1, 1
Téa = o li,j 3 (Bi#i,jﬂ T Bi"’*i,j-l)
i+s, ]
1
+ (B, _ +2B, , . +B,, ., .)
m g,y 17nIHL 1-%,5  Ti-l5,3-1
n (u +u, )
—y - i!l 1+1,_'L i:j
(u T&a\)y 164x m, [(Bi+1,j+l + ZB1.+1,j * Bi+l.j'1)
] ,
1
+ _‘“1 : (Bi’j_,_l + zni’j + Bi,j-l)]
1
- (ui,.‘l + ui—l,j)[-—mi ] (Bi,j+l + ZBi,j + Bi,j—l)
1
+ ——-—-mi-l ] (Bi—l,j+1 + 231—1,;1 + Bi-l,j-l)]
Let Bl 4 = Biya, 441 ¥ 2Byaa,y ¥ Bina 411
B2i,3 T Bya Y 2By T By
B3i,g " Bor, 941 ¥ By,g Y Biar,g1 -

 ——— i b bt Stk i
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Simplifying yilelds
m (u +u, ) (u -u,_, )
& T4a) = 1233: [ “1;1 LI B1, J + i"'lljm 1-1,4° 132i ;
y 1+1, § ’ 1,1 ’
(ui,j + ui—l,j)
- - B3, j]
1-19.1 ?
e
T4b, , = - —2d @ 14a)
1,3 Py, s y
m2 (u +u, ) (u -u )
i,4 i+l,9 i.3 i+1, 1 i-1,]
"~ T6p. .bx m Bl s * o B2y
i,3 1+1,3 ’ 1,3
o ¥ %,y
- - B3, j]
1-lsj i
1
= = Teax T4y 4
Therefore, T4 at cross point i+, j+s can be written
I T _ -
T4i+%,j+% 32(Ax)2 (T4c1+1,j+1 + T“°1,j+1 T4Ci+1,j T4c1’j)

T5: T5 is analogous to T3 except that in T3c, u is replaced with
v and, because the outside differentiation is with respect

to vy instead of x, the final expression is

m

15 N~ % ke SO P + T3¢
1+, 3+ 32(ax) 2

T T3c, .)

i+1,§+1 14,9 T 36 gap T30y g

e o e

PRSIV
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‘ T6: T6 is analogous to T4 except that in T4c, u is replaced Q
‘\ with v and, again because of the outside differentiation, ! f
the final expression is 1
L
| n b
| - o AHs it : - -
'1'61_“2"1* 3 (T4Ci+1,j+l + T“ci+1,j T"°1,j—1 Tlcci’j)
32(4x)
Xy XY,
T7: - __{xyg; @ ) === 6T
mp* mp*
L1887 ‘
m 80 u
—xy 7 :
134 ™ —g !
Therefore, T7 = - FGO (0 u )] !
< ;

:‘xy l ° . . . .
5,3kt T G (i, g iers T Oay g s T Ottg gy ekl T Oty -ty lotly)

)

-G 1
L9kt T2 g g0k

Xy - 1 . . .
%5, 4,kHs U1, ks~ 8 Oawg, g kb T 1, 1ok, kebls T O1ols, 54, kbl

* 05, 33, k0 (L5000 T 0, 4,00

g, s o e

ot RS -

Yo i PR L Ao e

s o A A P e [ S

B e o vy < o e civaie S LabAnMCIN 8

I
}
i
|
1
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1
m L3 ke ~

T8y 5 ks ™ 8 o) [(°t+&5,j+é5,k+1 * O, gt k4l

* Oty gt kbt ity gt kb1 (U g ka2 Y g )

= Oy gk ¥ oy gtk T %ek g8kt Oaoly, gt k)
Wy 5k T 1k, ke ]
1 i

- T7b

T7 . om o it 4
i+, 4+ 168x(o,

+ T7b

=R (T7by 41, 341, kb 1,541, k+s

=TT, gkt T TP, g k)

T8: T8 is analogous to T7 except that the u is replaced by v
in T7b. Also, the outside differentiation is with respect

y instead of x and the final expression is

18 o Mg 44
1+, 145 16Ax(c:k+1 -

+ T7b

1+1,3+1, ks

s (T 141, 1,k

i — e A~ e

T ks T TP g k)
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wRT p, RTY p, )
X X

SV 4ty Pe L+ /0

xy _ 1
T3od =% iy g * Toamg gt ¥ ooty g * Ty gt

1
Pi,j =% Pasig, g4 ¥ Prgatg gl T Papoty gy ¥ Pagoty, gt

| B} -
P* 2Ax (p*i'Hi,j'H! + p*i-;f’j#f p*i'ﬂi’j';f p*i-%hi—lf)
i,3

Therefore, T9a is

22001 oty ey T Towssgots ¥ Taos gy T T 5
1,3 20% “(Pagng gty ¥ Py gt T Pty gty T Paioyg 3oy

T9a

@uWJ%+Pﬁ%J%;PﬁwJ%‘Pﬁ%J%H
(1 +p./0)

m
- - 1Pl (g, + 19a

T9 -
i+, jHs 4(Ax)2 i+l, j+1 i,j+1

T9 T9a, .)

441,53 T T34,

T10: T10 is analogous to T9 except that p, : replaces p, Y and the
y X
outside differentiation 1s with respect to y instead of x.

m
—x

S % | - -
Pa” " Tax Papatg, pais ¥ Pateig g0 T Py, g T Pratg 5o
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I WG TR TR R S o C P
L3 28x “(Pagpy s * Pagty, 3o ¥ Pagcty gy ¥ Pagig 5o
@iy, a3y * Pty - = Practy, qatg ™ Pagty 30
1+ pt/cr)
. D 4 } -
Tloi+%,j+5 4(Ax)2 (T1031+1,j+1 + T10a1+1‘j TlOai’j+1 TlOai,j)
Til: T11 P I fv
: a - - T ——
fv
Tila, , = ¢ li’j
Therefore,
Ty e i (Tllai+1’j+l + Tllay 44y - Tlag, - Tia )
fp,u qu:xy fu
T12: Tl2a = = -
mp, mp .
fu .
uzai’j = m—|i,j

Therefore,

ny

R S 79 s 1 - -
T121+%,j+% A (T12a1+1’j*1 + T12a1+1,j TlZai’j+1 TlZai’j)

e g

T e m——— ot . a2 o

J T Y A A
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APPENDIX 3

OBJECTIVE PRECIPITATION SCORING PROCEDURE

In this appendix, we present the objective precipitation scoring
procedure developed by Anthes (unpublished). Mesoscale models are now
producing forecasts that are finer in scale than synoptic-model
precipitation forecasts. Hence a mesoscale model might forecast the
correct intensity and shape of a precipitation field but displace the
field by some small distance. This forecast would receive a poor
score with a conventional scoring method but the forecast does contain
useful information. The skill score presented here was designed to
detect forecast displacement errors.

Let PF and PO be N by M matrices of forecast and observed
precipitation, respectively. An example matrix of the 29 by 34 fields

used here is

P29,1 see ves P29’34

P = . (A
PZ,l PZ,Z e .
Pl,l Pl,Z oo e P1’34

3.1)

[ et T )

RN

v e — by e -
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The skill of a forecast will be computed for various shifts or

i "lags" of the forecast and observed fields. A shift of the forecast
field a distance kAx to the left with respect to the observed field

will be given by a positive integer parameter k; similarly, a downward

g ————— -

shift will be given by a positive L. When the forecast and observed

fields are shifted, a skill score will be computed for the overlap

‘ region only. Let A be the total number of points in the overlap

region. Then A is given by é

A= (N-2)M - k) . (A3.2)

- = o n

Define the variance of PO in the overlap region as

N-2 M-k

Rl it

l a7t o (eo, s - 702 250, k>0
i=1 §=1 :
' g N2ooM —
A b T (PO, , - PO) 250, k<0
I - i=1 j-l"k i’j (A3 3) '
l PO - ) i
-1 N M-k —9 ;
A I I (0, , - PO) 2<0, k>0 ;
' i=1-1 j=1 ’ :
4 N H ., |
A £ I (PO, , - PO)" 2<0, k<O
| 1=1-% j=l-k 3
' where .
| N
PO=AIZPO . . (A3.4) 5
' b W | i i
]
l !
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Similarly, the variance of forecast precipitation, SPF’ is given by

(A3.3) except that (PO1 i - ?5)2 is replaced by (PFi 3 - f?)z. The
9’ b
elements c, | of a matrix C are defined as { ;
*
B o]
i
T (PO, 4 = PO)(RFy o 1y = PP) ::8’
1=] §=1 1’ »3
} N-2 M 2
— —_— >0 H
z z (PO - PO) (PF ~ PF) ?
4=1 jml-k | 1ed 142, J+k k<0
A LR - (A3.5)
I ASpoSpr g,k =
+ N -k
L MZ (B0 g = PO) (PFyyy 14y = PF) lt:g’
- 1=1-g j=1 1’ -
. N M
; = ==, %<0 ?
4 P (PO, , ~ PO)(PF - PF) ..’
| gm1-p jel-k | Lol 144, 3+k k<0 g
¢ '
B Let 2 and k vary over some range. For example, let % = k = 2, f
] Then the matrix C is X
F 3
T €2,-2  Sa2,-1 S2,0 2,1 Sa2,2 :
: i
? 1 1,2 %1,-1 %1,0  %1,1 1,2 i
.', . !
' €=1¢%%,-2 ©%,-1 %%, %, %, (A3.6) g
1
t
‘-2 “,-1 S0 ‘1,1 S1,2 k.
=X !
T ©,-2 €2,-1 2,0 2,1 5,2 o
4
{ The elements Sk of the matrix C are the correlation coefficients
1 9

P N

| between the observed and forecast precipitation fields for a given
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displacement defined by % and k. The maximum element of C represents

the highest correlation between the observed and forecast patterns.
The values of 2 and k represent the spatial offset necessary to achieve

the best score. Good forecasts would have a large maximum c (1.0 1is

2,k
perfect) and, for the maximum K’ low values of £ and k (0 and 0 are
9

perfect).
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